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ABSTRACT

English abstract
Scientists have always been fascinated and puzzled by the marvel that is the human brain. This 

organ seems to be of an exaggerated size for our body, demanding an enormous amount of energy 

and resources to be maintained. For evolution to favour such an enormous expenditure of energy, 

the benefits must outweigh the cost. During the history of neuroscience different authors have 

attempted to correlate the size of a species nervous system with its cognitive abilities, in the search 

for an explanation on why we have such a big brain: if possessing an oversized brain is how a 

species can produce outstanding cognitive abilities, then the survival advantage outweighs the costs. 

However, brain size correlates first of all with body size, having nothing to do with the cognitive 

capabilities of a species. To solve this problem, different measures have been adopted, like brain-to-

body weight ratio, encephalization quotient, the raw number of neurons in the cortical areas. When 

confronted with empirical evidence, however, all these measures fail to predict the presence of 

complex   cognition,   especially   for   species   phylogenetically   distant   from   us.   In   particular, 

miniaturized organisms, like insects or spiders, exhibit outstanding behaviours, products of complex 

cognition, with brains multiple orders of magnitude smaller than ours. It has been proposed that our 

premise is misguided. Cognition does not need a big brain to manifest, quite the opposite: a higher 

number of neurons increase the memory buffer and becomes more robust against noise, while 

cognitive processes only require a handful of cells well organized in complex circuits.  The process 

of brain miniaturization during evolution should have favoured the birth of small but complex 

neural circuits, capable of dealing with multiple situations. In this framework, in this thesis, I have 

presented some of the studies carried out during my PhD project on miniature organisms.

Firstly, the ants are described. As these insects are phylogenetically similar to bees and bumblebees, 

which have been extensively studied in the last three decades and have been found capable of 

outstanding   cognitive   processes,   they   represent   the   first   candidate   to   understand   if   complex 

cognition is widespread in invertebrates With two different studies, we tested the ability of ants to 

perceive   and   register   information   from   the   environment.   It   appears   that   the   process   of 

miniaturization during evolution has favoured the development of clever circuitry, that let the ants 

process a great variety of information with only a handful of neurons, and register those with a load-

independent memory process, suggesting the presence of complex cognitive abilities.

Secondly, as the main topic of my project, the jumping spiders are presented. These arachnids have 

recently caught the interest of scientists for their unique hunting strategies, that involve detouring, 
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perspective taking, categorization and other cognitive skills. I have tested their visual perception to 

understand if it is guided by the same rules that govern the human’s one (e.g., Gestalt principles). 

However, I failed to design a methodology capable to consistently train the spiders, and as such the 

results were inconclusive. To overcome this problem, I designed an automated training system. This 

proved to be an effective way to train jumping spiders, opening future possibilities for the study of 

this species’ cognitive abilities.
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Italian abstract
Gli scienziati sono sempre stati affascinati e incuriositi dalla meraviglia che è il cervello umano. 

Quest’organo   sembra   essere   di   dimensioni   esagerate   rispetto   al   nostro   corpo,   richiedendo   di 

conseguenza un enorme quantità di energie e risorse per funzionare. Perché l’evoluzione possa 

favorire un così drastico consumo di energia, i benefici devono superare i costi. Nella storia delle 

neuroscienze, diversi autori hanno tentato di metterei in correlazione la dimensione del cervello di 

una particolare specie con le sue capacità cognitive, alla ricerca di una spiegazione per un siffatto 

cervello: se un cervello sovradimensionato è necessario per produrre comportamenti complessi, il 

beneficio da essi garantito supera i costi. Ciononostante, la dimensione del cervello di una specie 

correla prima di tutto con la dimensione del suo corpo, avendo niente a che vedere con le sue 

capacità. Sono state proposte diverse misure, come il quoziente tra peso del cervello e peso del 

corpo, il quoziente di encefalizzazione, o il numero grezzo di neuroni presenti nella corteccia. 

Quando confrontate con le evidenze empiriche, tutte queste misure purtroppo sembrano inadatte a 

predire la presenza di capacità cognitive complesse, specialmente nelle specie più filogeneticamente 

distanti   da   noi.   Nello   specifico,   organismi   in   miniatura,   come   insetti   e   ragni,   mostrano 

comportamenti complessi, frutto di processi cognitivi, pur avendo cervelli di diversi ordini di 

grandezza più piccoli dei nostri. È possibile che la nostra premessa sia infondata. Non c’è bisogno 

di un grande cervello per produrre cognizione: un più alto numero di neuroni può aumentare le 

capacità mnemoniche e capace di ridurre il rumore di fondo, mentre processi cognitivi richiedono 

solo   una   piccola   quantità   di   cellule   organizzate   in   circuiti   complessi.   Il   processo   di 

miniaturizzazione durante l’evoluzione dovrebbe aver favorito lo sviluppo di piccoli ma complessi 

circuiti neurali, capaci di gestire più situazioni contemporaneamente. All'interno di questo contesto, 

in questa tesi, ho presentato alcuni esperimenti svolti durante il mio progetto di dottorato sugli 

organismi in miniatura.

Inizialmente, sono descritte le formiche. Questi animali, in quanto filogeneticamente vicini ad api e 

bombi, rappresentano il primo candidato per comprendere quanto e se la cognizione complessa sia 

comune negli invertebrati. Queste ultime due specie infatti sono state molto studiate negli ultimi 

trent'anni, e sono state trovate capaci di sorprendenti processi cognitivi. Attraverso due diversi 

esperimenti,   abbiamo   testato   la   capacità   delle   formiche   di   percepire   e   registrare   informazioni 

dall'ambiente. Sembra che il processo di miniaturizzazione durante l’evoluzione abbia favorito lo 

sviluppo di circuiti ingegnosi, che consentono alla formica di processare una grande varietà di 
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informazioni con una manciata di neuroni, e di registrarle tramite un processo indipendente dalla 

quantità di dati, suggerendo la presenza di capacità cognitive complesse.

Successivamente, come tema principale del mio progetto, vengono presentati i ragni saltatori. 

Questi aracnidi hanno recentemente catturato l’interesse degli scienziati grazie alle loro uniche 

strategie di caccia, che richiedono la capacità di detouring, perspective taking, categorizzazione e 

altre capacità cognitive. Ho testato la loro percezione visiva per comprendere se essa sia guidata 

dalle stesse regole che guidano la nostra (ovvero, i principi della Gestalt). Purtroppo però, non sono 

riuscito ad individuare una metodologia capace di addestrare i ragni saltatori, e per questo motivo i 

risultati   sono   stati   inconcludenti.   Per   superare   questo   ostacolo,   ho   disegnato   un   sistema   di 

addestramento automatico. Questo sistema si è rivelato un metodo efficace per l’addestramento dei 

ragni saltatori, capace di aprire possibilità future per lo studio delle capacità cognitive di questa 

specie.
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Brain size as a predictor of behavioural complexity

Brain size as a predictor of behavioural complexity
‘primate (n.): Meaning “animal of the biological order including monkeys and humans” 

is attested from 1876, from Modern Latin Primates (Linnæus), from plural of Latin 

primas,   “of   the   first   rank,   chief,   principal”,   from  primus “first”,   so   called   from 

supposedly being the “highest” order of mammals’ [adapted from 1]

Why do we, humans, have such a big brain? This question has puzzled scientists for centuries. Our 

brains are quite costly to maintain [2–6], and to accommodate their size we were forced to modify 

our body [5] and behaviour [7]. For evolution to favour such an enormous expenditure of energy, 

the benefits of a large brain must outweigh the costs. Many theories have been proposed to describe 

why we evolved with a bigger brain: to cope with a more complex social environment [8], through 

sexual   selection   [9]   and   more.  These   hypotheses   all   start   from   an   underlying,   fairly   obvious 

assumption:   brain   size   correlates   directly   with   our   ability   to   produce   complex,   intelligent 

behaviours and, particularly, our unique cognitive abilities. Under this reasoning, a bigger brain is 

evolved when the environment increases in complexity and the animal needs to cope with it, thus 

counterbalancing the cost of maintenance with an enormous advantage in fitness. In fact, among 

humans, individuals with bigger brains seem to possess a higher level of general intelligence [10], 

suggesting that this relationship may also hold true across species. Until the seventeenth century we 

believed that we had the biggest brain in the animal kingdom [11], and, as such, that we would be 

the most intelligent creature, which in turn made us able to become the dominant species of the 

planet. Unfortunately, we quickly learned that both elephants [12] and sperm whales [13] have a 

brain far bigger than ours. However, this discovery did not cause scientists to cast any doubt on the 

humans’ primacy, nor made them reconsider the supposed level of intelligence produced by these 

other massive brains. 

Indeed, there is an undoubted evidence that brain weight correlates positively with total body 

weight  [14,15]. Following  this  reasoning,  the  brain-to-body  weight  ratio  should  be used  as  a 

predictor for the presence of high cognitive abilities [16]. However, this measure does not work 

well with extreme cases, as Haller’s rule predicts that smaller animals tend to have bigger relative 

brain sizes [17], putting the tiny shrew on top of every other mammal, with a 3.33 ratio (humans 

have a 2.33 ratio) [11]. Instead of using a raw brain-to-body weight ratio, researchers have proposed 

using a relative measure: how much any given species’ brain size deviates from the expected one 

for the corresponding body weight. This measure has been named Encephalization Quotient (EQ) 

3



SECTION 1 – INTRODUCTION

[18,19], finally defining the human species as the pinnacle of brain evolution, with an EQ of 5.72 

[20],   representing   an   unprecedented   deviation   from   the   whole   animal   kingdom   (figure   1.1). 

However, even from the onset of this theory, it generated strong critiques [21]: EQ fails to account 

for evolutionary constraints on body size that can make EQ change drastically, not because of 

differences in the brain, but solely because of body size differences. This may also explain why the 

highest EQ is observed in species belonging to the orders with the highest variability in body weight 

[20]. Moreover, allometry methodologies can introduce systematic errors when used to compare 

species   of   orders   or   even   families   too   different   from   each   others   [21].   More   recently   some 

evidences have surfaced, that is indeed not a ratio between brain and body mass that predicts 

cognitive abilities in primates but brain weight alone [22]. 

Figure 1.1 – Mammals regression line describing the expected brain weight (y axis) for a given 
body weight (x axis). Light blue dots are primates. The distance between any given point and the 

regression line is that species’ Encephalization Quotient (EQ). Note how the modern human point is 
the furthest from the regression line in respect to all other mammals. On the other hand the 
elephant and the blue whale, that had a brain to body weight ratio greater than humans, are 

actually near the regression line. Adapted from [11].

It has been proposed that any measure based on brain weight suffers from the incorrect assumption 

that bigger brains possess more neurons. If the functioning unit of the brain is, in fact, the neuron, it 

4



Brain size as a predictor of behavioural complexity

is the number of those that may predict the level of cognition, and not brain size in itself. However, 

the number of neurons in two similarly weighted brains can be profoundly different [23,24]. Also, 

when excluding the neurons dedicated to motor and body control, body size should not influence 

the processing power, as all other neurons are dedicated to it [25]. As such, the number of neurons 

seems to be the best candidate to predict cognition complexity in a species [24–26]. This measure 

also solves the apparent deviation that EQ shows and no longer describes the human being as an 

outlier in the nonetheless consistent brain-to-body weight ratio regression line. When considering 

the number of neurons, humans fit the evolutionary expectations [26], but still remaining on top of 

every other animal species, both for number of neurons and, consequently, cognitive complexity 

(figure 1.2).

Figure 1.2 – Performances obtained in a cognitive task (y axis, from [27]) by different animal 
species, as a function of the number of neurons in their cortex or neopallium (x axis, from [24,28]). 

Note the correlation present between the two. Adapted from [25].

In my opinion, all of these measures, from the most basic to the most sophisticated, suffer from the 

same problems. What exactly are we correlating brain size/number of neurons with? How do we 
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measure cognition? Behavioural complexity stretches to such a vast amount of abilities that it is 

almost impossible to define it with a unique and measurable variable [15,29,30]. The studied 

correlation between brain size and cognitive complexity is profoundly dependent on the definition 

of cognition used, or on the test employed (even when looking only amongst humans [31] instead of 

across species).  Defining cognition itself is not easy [32]. The word itself comes form the 15th 

century:  ‘cognicioun,   “ability   to   comprehend,   mental   act   or   process   of   knowing”,   from 

Latin cognitionem  (nominative cognitio) “a getting to know, acquaintance, knowledge”, noun of 

action from past participle stem of cognoscere “to get to know, recognize”, from assimilated form 

of com  “together” (see co-) + gnoscere “to know”, from PIE root *gno- “to know.” In 17c. the 

meaning was extended to include perception and sensation.’ [33]. However this definition cannot be 

operationalized:   the  internal   experience  of  “knowing”   about  the  environment   is   impossible  to 

demonstrate experimentally: when producing any behaviour, does an animal actually “know” what 

it is doing? A different, operationalizable definition is required to fruitfully continue this discussion 

on the brain-cognition correlation. For the purpose of this thesis, I will follow the definition given 

by Shettleworth [34], for whom: ‘[cognition is] the mechanisms by which animals acquire, process, 

store, and act on information from the environment’. With this definition we could theoretically 

encompass every single behaviour [32], except perhaps reflexes. However, we can distinguish 

between various levels of complexity in cognition itself based on the amount of processing that 

takes place between a stimulus and a response. In other words, it depends on the amount of 

information received and the amount of processing before a behaviour is produced. However, as the 

reader will discover in the next paragraph, perhaps our judgment on which mental processes are 

complex and which are not may be very far from the truth.

Even if we were able to operationalize cognitive complexity in a consistent manner, we would still 

lack experimental evidence on what species can produce what complex cognitive behaviour: any 

measure   of   cognitive   performance   suffers   greatly   from   an   anthropocentric   bias.   Research   on 

comparative cognition today still focuses mainly on primates, followed by rats, pigeons, other birds, 

dogs and then all others [35]. The more we study these species, the more we discover impressive 

feats that their brains allow them to perform, the more we believe them to be cognitively capable. 

‘Absence of evidence is not evidence of absence’ [36], and yet we systematically consider an 

animal incapable of producing a specific complex behaviour that has never been tested or when 

enough convincing evidence is lacking. On the other hand, the study of cognition suffers inevitably 

from the positive publication bias [37]: overestimating cognitive abilities of the species that are 
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tested more frequently, since publications about unsuccessful tests are incredibly rare. Most likely, 

some complex abilities are indeed possessed only by some species, which in turn may be considered 

more cognitively advanced, but until definitive proof is available, we should abstain from any 

consideration about species that have not been directly tested. Indeed, some studies have used a 

comparative approach to test different species on the same cognitive skill in order to understand 

differences and similarities. However, those studies are narrow in their definitions (as they should 

be), focusing only on a particular ability congruent with cognitive complexity, and they are focused 

only on some species: mostly primates [22,27], and corvids [38] (note that the latter seem to 

outperform great apes, even with a brain of multiple orders of magnitude smaller and with less 

cortical/neopallium neurons [25]). Ultimately, all the predictors of cognitive complexity based on 

brain size presented in this paragraph seem to have a narrow explanatory power and are based on 

measures that by their nature do not permit a wide comparison across species, remaining valid only 

amongst mammals, if even so. 

Why do we, humans, have such a big brain? To this day the scientific community is unable to 

provide a unique, evidence-supported answer.  Evolution would not have favoured the development 

of an organ so costly if it were not useful [15], but we will never discover it if we focus solely on 

justifying our presumptuous cognitive primacy. Our definition of cognition is so broad, and our 

understanding of the brain is so narrow, that every attempt in finding a correlation between any 

measure of the two is destined to fail [15,29,30]. The inadequacy of brain size as a predictor for 

cognitive complexity becomes even more evident when considering that animals possessing a brain 

immensely smaller than ours, can still produce outstanding behaviour, unsettlingly similar to the 

finest cognitive processes of humans [14]. In this thesis, I propose that to unveil the secret of our 

expensive brain, we should not focus on demonstrating that we are different and unique. Instead, we 

should   direct   our   attention   to   what   a   miniature   brain   (thus   possessing   a   supposedly   low 

computational power) can do.
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Solutions to being small
‘It is certain that there may be extraordinary activity with an extremely small absolute 

mass of nervous matter; thus the wonderfully diversified instincts, mental powers, and 

affections of ants are notorious, yet their cerebral ganglia are not so large as the 

quarter of a small pin's head. Under this point of view, the brain of an ant is one of the 

most marvellous atoms of matter in the world, perhaps more so than the brain of man.’ 

Charles Darwin, The Descent of Men, 1872 [39]

Arthropoda   is   one   of   the   most   diverse   phylum,   containing   80%   of   all   animal   species   [40]. 

Moreover, it makes up 50% of the total Animalia kingdom biomass [41]. According to these 

numbers,   evolutionary   speaking,   being   an   arthropod   must   be   successful.  At   the   start   of   their 

evolutionary history, arthropods did not face any limitations in what size they could reach. Some 

were already small, while others were massive, with some insects reaching a 70cm wingspan [42]. 

From the Jurassic period onward however, mainly due to the decrease in oxygen concentration in 

the atmosphere, they underwent  a massive decrease in  maximum size.  This  caused a general 

miniaturization of the body that forced many species to find a solution on how to fit their brain in a 

smaller space without having to renounce too many of its functions. The term “miniaturization” is 

generally used in a relative sense, not based on the objective size of an animal species, but on its 

relative dimensions with respect to phylogenetic relatives [43]. However, the overall size of an 

animal has an effect in itself [44]: if as discussed above the functional unit of the brain is the neuron 

[26], the space available will pose an objective limitation in the maximum number of cells that can 

fit inside the body. Nonetheless, arthropods still have a functioning brain and are able to act and 

react to their environment successfully. As Charles Darwin noticed [39], evolution must have come 

up with ingenious ways to fit a miniaturized, perfectly functioning brain inside these small bodies. 

Three different theories have been proposed to explain how a brain can function when undergoing a 

miniaturization [15]. These three hypotheses are not mutually exclusive, as different animals may 

employ different strategies, or even multiple strategies can be present in the same species.

Size limitation strategy

The first strategy that can be employed with a reduced cranial capacity is pretty simple: renounce 

some skills and computational strategies in order to reduce the needed brain power (and number of 
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neurons). This idea would progress in the same direction of the correlations between brain size and 

complexity   presented   in   the   previous   paragraph.  As   already   hinted,   this   strategy   finds   little 

experimental support when cognitive abilities are directly compared between two different-sized 

animals   (i.e.   corvids   and   primates   [38]).  Also   amongst   arthropods,   specifically   arachnids,   the 

employment of this strategy struggles to find empirical support. Adult and juvenile spiders of the 

same species show no significant difference in complexity when building webs [45]. Also, different 

sized species orb-weaver exhibit the same absence of difference [46]. Moreover, juveniles jumping 

spiders possess a comparable visual performance to adults, despite the major size difference [47]. It 

seems that behavioural complexity is too valuable for survival that it may never be beneficial to 

forfeit it. One may argue that in order to retain high capacity in web building or vision, these tiny 

spiders may give up completely other processes that are not species-specific, such as rule learning: 

enlarging the “orb-weaving” brain area and shrinking the “rule-learning” one. This  may be a 

plausible explanation, but as it will be described in the next paragraph and in the studies reported in 

this thesis, at least some arthropod species lack these predicted limitations in complex behaviour.

Over-sized brain strategy

A highly functioning brain may be so valuable that no amount of constraints can stop evolution 

from investing resources in neural circuits [48]. For this reason, the brain of miniature animals will 

increase in size as much as it is physically possible. This can be done using various mechanisms. 

One possibility is to expand the neural tissue to occupy the highest possible portion of the body. 

This pattern can clearly be observed in insects [49–52] and spiders [53–57], where the brain makes 

up a massive portion of the entire body weight. In some extremes, the brain even extends over its 

designed container, the cranial chamber, and expands into the limbs. This pattern is not unique to 

arthropods as already hinted in the introduction: the “Haller’s rule” [17] predicts  that smaller 

animals will have a relatively enlarged brain, thus testifying to an increased investment in the neural 

substrate. 

A second alternative (often employed in conjunction with the first) is to decrease the size of each 

neuron in order to maximize their total number. This pattern has already been described in birds 

[25] and remains true for arthropods [49,51,53], where neurons are not only smaller but also more 

densely packed. 

However this strategy does not come without costs and limitations. Even if the brain is expanded to 

its full potential, it remains massively smaller than the one possessed by bigger animals: some 

9



SECTION 1 – INTRODUCTION

neurons must be forfeited. Moreover, if the neurons are more densely packed, the energy density 

requirement also increases [49], posing another limit to how much neurons can fit inside a miniature 

organism. Lastly, neurons are inherently noisy, producing sometimes random action potential [58]. 

Smaller, more packed neurons produce even more noise [58–62], posing yet another limitation to 

how small each neuron can get and how many can fit in a given amount of space. Due to all these 

presented   limitations   the   over-sized   brain   strategy   can   limit   the   amount   of   neurons   lost   in 

miniaturization but can never produce a miniaturized brain with a number of neurons comparable to 

the one of bigger species. Species that employ this strategy must also employ either the size 

limitation one (i.e. renouncing to at least some processing power), or the economy of design one, 

(i.e. redesigning the structure of the brain).

Economy of design strategy

The third option that miniature brains can embrace is to just become better. Having a large amount 

of neurons is not the only way to produce complex behaviours. In fact, neural circuits can be 

designed in a variety of ways, with some being more economic and conservative than others. As an 

example, animals’ sensory system registers a variety of useless information that is then discarded 

when arriving in the central nervous system that retains and analyses only biologically relevant 

information [63,64]. The presence of this discrepancy can be the target of simplifying mechanisms, 

where   the   superfluous   information   can   be   selected   and   discarded   before   reaching   the   central 

nervous system, in turn decreasing the load and the number of cells needed. Moreover, the circuits 

in the central nervous system itself can be improved and fine-tuned in order to produce behaviours 

comparable to the ones of bigger animals [65]. We may be tempted to perceive the economy of 

design   strategy   as   just   another   simplification   method,   where   more   complex   processes   are 

abandoned in favour of peripheral reflexes and where every process is just the bare bones of its high 

neurons number counterpart. However, this is far from the whole story. The central nervous system 

of arthropods can be surprisingly complex: what it lacks in neuron count it makes up for in the 

number of connections (see for example the description of a single neuron in the bee brain [66]).

It is possible that having less neurons does not have effect on the processes available. However, it 

has been proposed that a high number of neurons only increases the processing speed and precision, 

enabling parallel coding due to the presence of multiple copies of the same circuit [14,61]. Each 

circuit responsible for complex cognitive ability may actually need only a handful of neurons, 

according to neural network studies. Tasks such as visual categorization [67], selective attention 

[68], spatial learning [69,70], sequence learning [71], numerical discrimination [72] or even route 
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planning and anticipation [73] could be designed with numbers that can easily fit inside a miniature 

brain.  These   neural   network   designs   cannot   tell   us   anything   about   how   miniature   brains   are 

designed   and   function,   but   definitely   demonstrate   that   these   systems   are   possible.   Counter-

intuitively,  it  seems   that  cognitive  processes  can  be  produced  by networks   with  only  tens  of 

neurons, while thousands of them are only useful to reduce noise, as well as increase speed and 

precision. The difference between a big and a small brain may be quantitative, not qualitative.

When asked to remember various visual stimuli, honeybees can recall just up to six of them [74], in 

contrast to the virtually infinite amount that humans can register [75]. This discrepancy fits with the 

idea   that   more   neurons   can   increase   precision   and   speed   as   well   as   create   parallel   circuits, 

effectively increasing the amount of memory at disposal. Insects have indeed been shown to learn 

fast  and effectively,  but  this  ability  deteriorates   as  a  function  of  information  amount  [76,77]. 

However,   the   quantity   of   retained   information   can   be   increased   drastically   if   a   generalizing 

mechanism is employed instead: object categorization for example may be the bees’ system to learn 

a rule about the world, instead of having to learn every single object in itself [14,78]. The same may 

be true for other complex cognitive abilities, which have already been described in Hymenoptera, 

like conceptual learning [79]. In this sense, cognitive processes are beneficial to miniscule brains, 

since a small circuit can this way cope with a massive amount of information, a quantity that could 

not be reached by simpler mechanisms.

All these evidences combined suggest that a miniature organism may be favoured in building 

circuits characterized by a low number of neurons capable of carrying out complex cognitive 

processes, in order to cope with the inability to form multiple parallel systems. As an example, 

being able to recognize the cause-effect relationship between events (a feat generally considered to 

be a complex cognitive ability) can be used to interpret a wide variety of situations, instead of being 

forced to individually learn each association between event pairs, task that requires a great number 

of neurons. Cognition may be favoured in small brains, and may also be the solution to the problem 

of   miniaturization.   This   idea   completely   contradicts   the   proposed   brain/behaviour   correlation, 

showing that cognitive complexity is independent from brain size. As per the quote by Darwin at 

the start of this paragraph, miniature brains are a magnificent example of adaptation and economy, 

where the size constraints induce an increase in complexity and efficiency.
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SECTION 1 – INTRODUCTION

Aim of the study
With this thesis, I propose that to really understand if and how our brain is unique, we first need to 

describe if and how different brains can produce the analogous behaviours. This will let us work by 

exclusion,   understanding   what   can   be   accomplished   with   different   neural   circuits,   as   well   as 

highlighting the true, and not supposed, differences between big and small brains. As described in 

the previous paragraph, arthropods represent an outstanding model: they are generally modest in 

size and have small brains. Nonetheless, multiple experiments have demonstrated that they possess 

outstanding cognitive abilities. There is, however, a significant limitation in the literature about 

arthropods’ cognition: most of the studies focused on bees and bumblebees (as will be further 

described in the next section), leading us to consider the hypothesis that these hymenoptera are just 

a flux of evolution, especially selected to produce complex cognition, without it being the elective 

solution to the problem of miniaturization. For this reason, with my PhD project I focused on two 

different arthropod species. 

First, I will report the experiments carried out on ants. I have studied this species during a 6-month 

period in Regensburg, Germany, under the supervision of Dr Tomer Czaczkes. Even though they 

have not been the main focus of my PhD project, I discuss them first in this thesis for the sake of 

argument. These Hymenoptera in fact are phylogenetically similar to bees and bumblebees and 

possess   a   comparable   central   nervous   system.   However,   even   if   a   vast   literature   about   their 

cognitive   abilities   exists,   there   are   still   many   feats   that   have   been   tested   only   on   bees   and 

bumblebees. As such, expanding our knowledge on the cognitive abilities of ants would let us 

understand if those abilities are widespread in all the Hymenoptera families, or if they are only a 

flux of evolution. According to the hypothesis presented above, cognition should be beneficial for 

miniature brains, and as such the same cognitive ability useful for bees and bumblebees should be 

found in ants.

Secondly, I will present the experiments carried out on jumping spiders. These have instead been 

the main focus of my PhD project. Through collaboration with my supervisor Prof. Regolin and Dr. 

Enzo Moretto,  I have founded a new laboratory on the study of this model Family. As they are 

arachnids, this Family is phylogenetically very far from Hymenoptera. Nonetheless, in the last three 

decades, some papers have reported outstanding behaviours that they can produce (see section 3 of 

this thesis). However, most of the literature still lacks direct controls aimed at understanding the 

underlying processes of these behaviours: are they the outcome of cognitive processes or are they 

the effect of preprogrammed routines? These spiders represent a promising model for the study of 
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miniature cognition, as they would demonstrate that cognition is widespread amongst the entire 

arthropod spectrum.
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The ant as a model species for cognition and simplification

The ant as a model species for cognition and simplification
‘Propter parvitatem autem sui capitis habet oculos sitos super quaedam additamenta, 

quae per modum duorum pilorum egrediuntur de capite suo : cuius signum est, quia 

quando illa amputantur, tunc vadit errando nesciens quo vadat, et tunc quamcumque 

apprehenderit aliarum formicarum, illam fortissime tenet, ut per ipsam ad casam 

revertatur, nec facile se ab ipsa permittit separari.’

Alberti Magni, De Animalibus libri VIII [80]

‘Because of the small size of their [ants’] heads, the eyes are placed on top of two hair-

like appendices : proof of this lies in the fact that when those are amputated, then [the 

ant] wonders without knowing where it is going, and will attach to any other ant, 

strongly holding to it in order to go back home thanks to her, and will not easily allow 

to be separated.’ (English translation)

It is often difficult to enter the world of species so alien to us. We generally look at animals’ 

behaviour with our lenses, attributing human-like reasoning to some behaviours and disregarding 

others that do not fit in our repertoire. As stated in the quotation above, Saint Alberti Magni 

believed that the eyes of the ant are on top of its antennae, because the animal is lost without them: 

the concept that vision may not be the primary sense for ants was completely disregarded. In the 

same way, when we look at the behaviours of animals so alien to us, we fail to find a direct 

explanation   for   the   individuals’  behaviour.   Each   ant   seems   to   wander   around   mechanically; 

however we recognize a final goal in the group behaviour, as the colony appears to be ultimately 

organized and well functioning. From this perspective, there is no wonder that, for the general 

public,   individuals   in   a   social   insect’s   colony  are   considered   simple   miniature   automata:   the 

complexity only emerges from their collective behaviour  [81]. This is far from the whole story. 

Social insects show decentralized organization [82]; there is no leader in a beehive or ant colony. 

Instead, every individual autonomously takes its own decisions based on its own experience and 

innate   predispositions.   Those   decisions   are   then   often   communicated   to   others [83–87]. 

Consequently, members of a group can compare their own memory and experience to the shared 

information provided by the other colony members, and make strategic decisions about the source 

of information onto which is best to rely  [88–90].  Such individual decision-making based on 

decentralized information sharing is not so different from how we use the Internet reviews of 
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restaurants or other services to make our own best possible choice with limited direct experience. 

Indeed, rather than suppressing individuality, the efficiency of a social insect colony depends on and 

benefits from the cognitive abilities present at the individual level  [91].  Thanks to the increased 

understanding and appreciation for the complexity of hymenoptera behaviour, a massive amount of 

literature about their cognitive abilities has been flourishing. Most of it has focused on bees and 

bumblebees, which have been found to produce virtually every behaviour they have ever been 

tested in  [76,92–97].

Ants themselves posses a plethora of cognitive abilities. Each worker can form complex memories 

[98,99] and even show disappointment if their expectations are not met [100]. However, most of the 

studies on ant cognition focus on their navigation abilities [101,102]. Nonetheless, there is still a 

great   variety   of   abilities   that   has   never   been   observed   nor   looked   for   in   ants,   that   we   may 

erroneously   assume   they   are   present   because   they   have   been   demonstrated   to   exist   in   other 

Hymenoptera. Experiments on ant cognition are crucial, as they can serve as comparative studies to 

understand how much specific cognitive abilities are widespread amongst the same Family and the 

same class [93,97,101].

In the following paragraph I will describe the structure of the ant brain, with particular attention to 

the mushroom bodies (MBs), which is the area that have been associated with learning, memory 

and other forms of cognition. Then, I will present two studies.

The brain of Hymenoptera
Thanks to the involvement of multiple scientists around the world in the past two decades, there is 

now a vast and ever-growing literature about how the brains of insects, Hymenoptera in particular, 

are structured and function. Covering all the literature would require a dissertation in itself, and is 

beyond the purpose of this thesis. In the following paragraph I will report only the most salient 

information for the study of cognition and a description of the gross anatomy.

The insect’s body is divided into 3 parts: the head, the thorax and the abdomen. In most species of 

insects, each section has its relatively autonomous neural circuit, as the brain is generally organized 

in separated ganglia [103]. The head contains the eyes, the antennae, the ocelli, the mouth part and, 

crucially, the most developed part of the nervous system: the brain. 

The bee brain contains approximately 960,000 neurons and has a volume of 1mm 3  [104], and it 

contains 7 main neuropils responsible for sensory decoding and information integration [103,105–
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107]. Two main sensory systems are located in the brain: the visual system and the olfactory 

system. 

The visual system starts from the two compound eyes. These are composed of multiple ommatidia, 

each surrounded by pigment cells. Each ommatidium is composed of an external lens (thick and 

chitinous), followed by a crystalline and, lastly, a rhabdome surrounded by retinal cells [108]. The 

retinal cells project neural fibres towards the brain and the start of the lamina ( i.e., the first neuropil 

of the hymenoptera visual system). This in turn projects its neurons to a second neuropil, the 

medulla, which connects both to a third-order visual processing centre, the lobula, and to the central 

brain section. These first three neuropils are probably responsible for the decoding of simple visual 

features,   such   as   colour,   motion,   and   orientation [14,109,110]   in   a   segregated   manner.   The 

information is integrated successively by the central areas. The lobula itself connects to the central 

brain, mainly to the central complex (CX) (figure 2.1) (but also to the MBs, which will be described 

afterwards) [111]. The CX consists of two deeply interconnected sections: the protocerebral bridge, 

situated in the posterior brain; and, more anteriorly, the central body. The latter is divided into an 

upper region ( i.e., the fan-shaped body) and a lower one ( i.e., the ellipsoid body) [112].  For a long 

time, researchers have believed that the CX is only a visual decoding area, as it only possesses 

direct connections to the other visual areas. However, in the last years, it has received increasing 

interest, as it has been identified as having a key role in many crucial tasks, such as locomotor 

control [113,114], spatial orientation  [113,115–118]  and visual memory [117,119,120] (note that 

most of these findings do not come directly from Hymenoptera, but are instead generalized from 

other insects, mostly Drosophila). Because of its function and evolutionary history, the CX has been 

compared to the human cerebellum [121,122] and basal ganglia [123]. It is important to point out 

that an area homologous to the CX exists also in the spider’s brain – that is, the arcuate body (see 

next section).

The olfactory system has been extensively studied in Hymenoptera, as it is the main sense for these 

animals. The literature is especially rich on the role of olfaction in relation to the reward system in 

the   bee   brain:   Most   of   the   experiments   administered   a   sucrose   reward   concurrently   with   an 

olfactory stimulus. Odours are detected by olfactory receptor neurons present in the antennae that 

subsequently project their connection to the corresponding antennal lobe (one for each antenna). 

The antennal lobes project both to a third-order olfactory neuropil, the lateral horn, and to the MBs 

[104,124,125]. These are not only olfactory neuropil: In the brain of Hymenoptera, they receive 

projections from many other areas, functioning as an integration centre [126]. In fact, many studies 
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have focused on the implication of the MBs in learning and memory  [127–131], and are now 

considered the functional equivalent of the human hippocampus [132–135]. The MBs input section 

is the Calyx (figure 2.1). This contains segregated inputs for olfaction, vision and mechanoception 

[14,104,136]. and are composed of Kenyon cells [137]. These are neurons characterized by a 

substantial arborization that composes the chalice such as the structure of the calyx. The axon-like 

branch divides again, forming a bundle of connections named pedunculus, and then it terminates 

into two different areas: the α and β lobes. These two last areas act as an output for the hymenoptera 

MBs connecting to other brain areas [14]. It is important to point out that also for the MBs there is a 

homologous and homonymous area in the spider brain (see next section).

Figure 2.1 – Main areas of the Hymenoptera brain. ME = medulla; LO = lobula; AL = antennal 
lobe; LP = lateral protocerebrum, third olfactory neuropil; MB = mushroom body; CY = calyx; CX 

= central complex; OC = ocelli. Adapted from [104].

To conclude, we have a wide literature that describes the Hymenoptera brain, the function of many 

areas and especially the proof that some of them are involved in complex behaviour and cognition. 

Also, we know a lot about the individual cognition of some social insects, such as bees and 

bumblebees. Lastly, we have a vast literature on ants behaviour, especially on their navigational 
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ability. However, we still lack many direct experiments to test the presence of specific cognitive 

abilities in ants, too often given for granted as they have been demonstrated on phylogenetically 

similar species. In the context of the hypothesis that cognition may be widespread in miniature 

brains as an effective solution to the small number of neurons, it is crucial to test if cognitive 

abilities are indeed widespread, and used over mechanistic systems. In the following paragraphs 

two studies will be presented. The first will focus on the ant’s perceptual mechanisms, and how they 

may facilitate complex comparisons between multiple, different-valued food sources thanks to 

perceptual rules. The second will focus on the ability of ants to record multiple information from 

different sensory sources, testing if the memorization is in fact dependent from the amount of the 

information (and so limited by neuron numbers) or based on a different process.
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Study 1: Support for the perceptual basis of irrational risk aversion in 
ants

This study has been submitted and is available as a preprint at [138].

Introduction

Finding a good meal is not easy: the environment provides a broad variety of food sources, but 

individuals are not necessarily able to explore all of them before committing to one [139]. The food 

sources the organism inspects will often have different attributes, and options can be compared to 

choose the best one. This economic decision process is so crucial for organisms that the ability to 

compare options is found not only in animals, but even in non-neuronal organisms such as plants 

and slime-moulds  [140–142]. This clearly suggests that a big brain is not needed in order to 

compare values of food, as it can be done with no brain at all. However, this is puzzling: to compare 

different values, the animal needs to register all of them, in turn increasing the information load 

which has been described in the introduction to be the Achilles’ heel of having few neurons. 

Traditionally, organisms were assumed to maximize energetic gains while minimizing costs on the 

basis that evolution should drive animals to have optimal behavioural strategies. However, the 

optimal foraging theory framework [143] fails to fully describe behaviour – organisms do not 

always behave optimally. These violations of optimality may shed light on the mechanism that these 

miniscule brains use to register and compare many “value” information. Extensive examples of 

violation of optimality in animal species can be found, for example, in the literature about risk 

sensitivity. For the purpose of this study, I define risk as a situation in which the probabilities 

associated with an option (e.g. food source) are known, but its exact value of is not. Conversely, 

“uncertainty” is when not even the probabilities of the various possible pay-offs are known. 

Risk sensitivity theories – the budget rule

Caraco et al. [144] effectively inaugurated risk sensitivity studies, by studying the preference of 

yellow-eyed juncos for different amount of seeds: one of the two alternatives available to the birds 

was stable, presenting always the same, medium amount of food (safe feeder), while the other one 

fluctuated in value, but had the same mean pay-out as the safe feeder (risky feeder). The authors 

then, based on the preference of the animals, designed a utility function [145], computing the 

perceived value (utility) for each number of seeds for the animals. Yellow-eyed juncos presented a 

concave utility function (and so were risk averse) when in a high energy budget, whereas their 
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utility function was convex (and so they were risk prone) when in a low energy budget. This 

behaviour was soon formalized as the Energy Budget Rule [146]. However, a growing body of 

work on risk sensitivity failed to provide consistent empirical support for the budget rule [147,148]. 

For this reason Lim et. al. [149] recently reformulated the budget rule. They argued that the 

classical budget rule is often misused in its binomial interpretation: animals are either risk prone 

(when in a low energy budget) or risk averse (when in a high energy budget). However, the 

optimum risk sensitivity in a given situation lies on a continuum, depending on the remaining 

energy budget of the animal, even arriving at extreme conditions (very low energy budget and very 

high energy budget) in which risk indifference arises again. Such a continuous interpretation of the 

budget rule may accommodate results considered to be inconsistent in the classical budget rule 

hypothesis (e.g., [150]).

Risk-sensitivity theories – Scalar Utility Theory

An alternative to prescriptive theories (based on optimality modelling) are descriptive theories, 

which explain behaviours in terms of proximate mechanisms. If risk sensitivity arises as a side-

effect of the neural or cognitive architecture of an animal, or due to evolutionary constraints, one 

need not attempt to fit this behaviour into fitness benefits. A striking pattern in risk preference 

studies is that animals are often risk averse when risking amounts, but risk seeking when risking 

delays [147]. Animals (and humans) are also generally risk averse for potential gains, but risk prone 

for potential losses  [151]. These patterns are elegantly explained by an understanding of how 

animals perceive the world, as described by Psychophysics  [152–154]. Stimulus strength has a 

logarithmic relationship with perception, as formalized by the Weber-Fechner law [155]. Thus, a 

constant feeder that always presents 5 seeds and a variable feeders presenting alternatively 1 or 9 

seeds   have   the   same   average;   however,   5   seeds   are   perceived   as   5   times   more   than   1   on   a 

logarithmic curve, while 9 is not even twice as good as 5. Hence, while the mathematical average, 

and thus the true energetic value, of the variable feeder is the same as that of the safe feeder, its 

geometric average is lower. In logarithmic distributions, such as the Weber-Fechner law by which 

animals perceive the world, the median is coincident with the geometrical average, and is the 

measure that describes the overall perceived value of an option, as it is the middle point between the 

two alternatives. Based on these insights, Kacelnik & El Mouden [148] developed Scalar Utility 

Theory (SUT) to describe risk aversion behaviour. They point out that, based on the Weber-Fechner 

law,   the   variance   of  the   memory   representation   of  a   food   value   increases   as   the   value   itself 

increases. For this reason, two options with identical mathematical average (means) but different 
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variances will have different medians, with the more variable option having a lower one (see figure 

6 from [148] for a complete explanation) However, support for this descriptive theory is also mixed: 

Lim et al. [149] argued that SUT has even weaker support than the budget rule, with only 8 of the 

35 studies reviewed by Kacelnic & Bateson [147] finding complete risk aversion when risking 

potential resource gains. Shafir [156] argued that it is the strength of risk preference that is driven 

by perceptual mechanisms, while the direction is driven by budget considerations, and could thus 

accommodate   both   risk   seeking   and   risk   aversion   in   a   manner   consistent   with   logarithmic 

perception. However, Shafir’s model can only account for alternatives with the same mean value. 

Whether risk sensitivity is best understood in terms of adaptation or constraints on perceptual 

mechanisms is thus still under debate.

Ants as a model for risk sensitivity

Risk sensitivity has been studied in a great variety of animals [for a review, see 148]. Amongst 

those,   nectarivores   have   received   particular   scrutiny   [156,157].   The   majority   of   studies   on 

nectarivores have been carried out on bees. Results have, however, been unclear: bees have been 

observed to be risk indifferent  [157–159], to be risk averse [160,161],  to follow the budget rule 

[162,163], or a mixture of those depending on risk variability  [156,164–166]. Bees and other 

eusocial   insects   represent   a   special   case   for   risk   sensitivity.   For   eusocial   insects   with   non-

reproductive workers, the colony is the main unit of selection and a colony can be considered a 

superorganism [81,167]. As such, the foraging successes of the individual workers are pooled.  This 

buffers  colonies  against short-term (negative)  fluctuation coming from  risky choices  made by 

individual foragers. Colonies can also visit multiple food sources simultaneously, allowing them to 

more   efficiently   exploit   their   environment   [168,169].   Lastly,   many   eusocial   insects   can   make 

collective foraging decisions using recruitment mechanisms to channel workers towards certain 

resources in the environment [170,171].

While research on risk preference and collective decision-making is extensive, these have rarely 

been combined. Collective risk sensitivity has been explicitly studied in ants: Burns et al. [172] 

presented colonies of rock ants (Temnothorax albipennis) a fixed-quality mediocre nest and a 

variable   quality   nest.  Ants   were  allowed   to   explore   (and   hence   evaluate)   each   nest   and   then 

recruited nest-mates, and colonies were found to be risk prone. On the other hand, Hübner & 

Czaczkes [173] tested the risk sensitivity of black garden ant (Lasius niger) colonies to food values. 

Each colony was presented with two feeders: a stable one, always presenting the same medium 
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quality sucrose solution (0.55M), and a variable one, presenting (changing every 3 minutes) either a 

low or high quality sucrose solution alternatively (0.1M – 1.0M).  Almost all trials showed a clear 

collective decision for one of the two feeders (as is expected due to symmetry breaking in ants 

collective decisions, see [83,174–176]), but overall colonies were risk-indifferent: half the colonies 

chose the safe feeder, and half chose the risky one.

This work aimed to explore individual risk preference in individual  Lasius niger  ant foragers. 

Although their collective behaviour appears to be rational, individual workers may not be [177]. 

They could be subjects to the same perceptual constraints discussed above and could be strongly 

influenced by expectations, causing disappointment for some food alternatives and triggering risk 

sensitivity. 

Materials and Methods

Subjects

Twenty-two queenless Lasius niger colony fragments of around 1,000 ants were used in the study. 

Each fragment was collected from a different wild colony on the University of Regensburg campus. 

Colonies fragments forage, deposit pheromone and learn well [99,178]. Each fragment was housed 

in a transparent plastic box (30×20x40cm), with a layer of plaster on the bottom. A circular plaster 

nest,   14cm   in  diameter   and  2-cm   thick,   was   also   provided.  The   colonies   were   kept   at   room 

temperature (21-25 c°) and humidity (45-55%), on 12:12 light:dark cycle. 

Each colony was fed 0.5mol sucrose solution ad libitum, and was deprived of food 4 days prior to 

each test. Water was provided ad libitum and was always present.

Experiment 1 – Risk preference between options of equal absolute value

The aim of this experiment was to assess the preference of individual ants between two food 

sources which provide, on average, an equal amount of sucrose: one feeder provided a stable 

moderate value (0.55M sucrose, the ‘safe’ option) and one provided a fluctuating value, either high 

or low (0.1M or 1.0M, the ‘risky’ option). This was achieved by teaching each individual ant to 

associate each feeder type (risky or safe) with a different odour, and then testing their preference in 

a Y-maze. Preliminary tests (see Appendix 1) and previous work [98,179] show that  L. niger 

foragers learn quickly (within 3 visits to each odour) and reliably to associate odours with feeders of 

different types. In total we tested 64 ants from 4 colonies. Each condition (scent association, feeder 
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order, risky feeder order, scent side on the Y-maze) was balanced and equally distributed among 

colonies.

Training

To begin each trial ants were allowed onto a 15cm long, 1cm wide runway, with a drop of sucrose at 

the end. The first ant to encounter the sucrose was marked with a dot of paint, and all other ants 

were returned to the nest. The marked ant was allowed to drink to satiety and then return to the nest 

to unload the collected sugar. She was then allowed to make 7 further training visits to the runway 

and feeder. If in any of the visit the ant did not drink the reward in 5 minutes, she was let back to the 

nest and recollected for the following visit. In each visit we recorded the number of pheromone 

depositions (counted by observing the movement of the worker’s abdomen) performed on the 

runway towards the feeder and towards the nest after foraging. Over the 8 visits the quality and 

odour of the feeder varied systematically so that the ant alternately encountered a moderate quality 

drop of sucrose solution (0.55M, ‘safe’) scented with one odour, or either a low (0.1M) or high 

(1.0M)(‘risky’) drop of sucrose scented with another odour. These values are clearly distinguishable 

by the ants [180] and correspond to moderate, low, and high value food sources for L. niger [181]. 

Note that the average of the low and high quality solutions equals that of the moderate quality. The 

solutions were scented using either rosemary or lemon essential oils (0.05 µl per ml). The runway 

leading to the feeder was covered with a paper overlay scented identically to the sucrose solution 

being offered. Overlays were scented by storing them in a sealed box containing cotton soaked in 

essential oil. Overlays were discarded after each return to the nest, to ensure fresh odour and to 

prevent a build-up of trail pheromone from occurring.

Testing

After the 8 training visits, the runway was replaced with a Y-maze (arm length 10cm, bifurcation 

angle 120°). The stem of the Y-maze was overlaid with unscented paper, whereas the two other 

arms were covered with scented overlays – one bearing the ‘risky’ associated scent, and the other 

the ‘safe’ associated scent. The maze tapered at the bifurcation to ensure that the ant perceives both 

scented arms at the same time [following 182]. No sucrose was present on the Y-maze. We recorded 

the ants’ initial arm decision, defined by the ants’ antennae crossing a line 2cm from the bifurcation 

point. We also recorded the ants’ final decision, defined by the ant crossing a line 8cm from the 

bifurcation point. However, the initial and final decisions of the ants were almost always the same, 

and analysis of either choice provides the same results (see Appendix 2). For brevity we henceforth 
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discuss only the initial decision data. On reaching the end of an arm the ant was allowed to walk 

onto a piece of paper and brought back to the start of the Y-maze stem, to be retested. The Y-maze 

test was thus repeated 3 times, to assess reliability of the ant choice. However, this handling may 

have caused some disruption (see Appendix 2) and repeated unrewarded trials affect motivation, so 

we conservatively analysed only the first Y-maze test. After testing, the ant was  permanently 

removed from the colony.

For each tested ant, one odour corresponded to the “risky” feeder and one to the “safe” feeder. The 

association between odour and feeder type, the initial feeder type encountered, the initial value of 

the ‘risky’ feeder, the side on which the risky or safe associated odours were presented on the Y-

maze test, and the scents associated with the risky and safe options were all balanced between ants. 

Performing treatments blind was attempted, but due to the clear negative contrast effects shown by 

ants upon encountering a low quality food source after better ones [180], true blinding was not 

possible.

Experiment 2 – Risk preference between options of different absolute value

Experiment 1 demonstrated very strong risk aversion in individual ant foragers. Experiment 2 was 

designed to test whether risk aversion would be maintained “irrationally”, that is, when the risky 

feeder had a higher average quality than the safe feeder.

As   in   experiment   1,   the   safe   feeder   always   presented   a   medium   quality   drop   (0.55M, 

indistinguishable for the ants from the solution provided ad libitum to the colony). However, the 

risky feeder alternated between a low quality reward (0.1M) and a very high quality reward (1.5M). 

The average molarity of the risky feeder (0.8M) was thus higher than the average molarity of the 

safe one. L. niger foragers can distinguish between the three presented molarities [100]. Moreover, 

in a pilot experiment, we observed that when presented with three different molarities ants do learn 

all three molarities and their associated odours (see Appendix 1). Each ant was tested on the Y-maze 

5 times, but as in experiment 1, only data from the first test was ultimately used (see Appendix 2). 

In total we tested 64 ants from 8 colonies. Each condition (scent association, feeder order, risky 

feeder order, scent side on the Y-maze) was balanced and equally distributed among colonies.

Experiment 3 – Risk preference between psychophysically balanced options

One hypothesis explaining the widespread risk aversion found in animals towards reward quantities 

arises from the psychophysics of perception: intensity is generally perceived logarithmically (see 
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introduction, [147,148]). It is thus the geometrical average between the two risky alternatives that 

may describe the perceived value. This  hypothesis  predicts  that animals should be indifferent 

between a safe and a risky option, if the risky option balances the logarithmic differences between 

the low and high quality reward. In experiment 2, these were not balanced:  the geometrical average 

of  the  risky  feeder  ( √0 . 1×1 . 5=0 .387 )  was  still  lower   than  the   one  of  the   safe  feeder   (

1√0 .55=0 .55 ), thus the risky option may still have been perceived as worse than the safe option. 

In this experiment we set out to offer a risky option in which the perceived qualities of the low and 

high reward were balanced relative to the moderate reward. We chose a moderate reward of 0.3M, 

and a low and high reward of 0.1M and 0.9M respectively. The geometrical average of the risky 

option ( √0 . 1 × 0 . 9=0 .3 ) was now equal to the one of the safe option. We thus hypothesised 

that ants would be indifferent between these two options. Each ant was tested on the Y-maze 5 

times, but again only data from the first test was used (see Appendix 2). In total we tested 40 ants 

from 10 different colonies. Each experiment (scent association, feeder order, risky feeder order, 

scent side in the Y-maze) was balanced and equally distributed amongst colonies.

Statistical analysis

Statistical analyses were carried out in R 3.3.3 [183]. Following Forstmeier and Schielzeth [184], 

we included in the models only factors and interactions for which we had  a priori  reasons for 

including. We employed generalized linear mixed effect models (GLMMs) using the package lme4 

[185], with  colonies  as   a  random  effect.  Y-maze  choice  data  was   modelled  using  a  binomial 

distribution and logit link function. We used the following model:

Initial decision =

first presented feeder(risky-safe)*

first presented risky alternative (good-bad) +

random effect (colony)

We then used the package car [186] to test which factors of the model had a significant effect on the 

dependent variable. Subsequently, we carried out post-hoc analysis  with Bonferroni correction 

using the package emmeans [187] both for the general preference of the ants for either the safe or 

the risky feeder (safe choice probability against random probability), and for the factors with a 

significant effect to analyse the direction of the difference. Plots were generated using the package 

ggplot2 [188].
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Pheromone deposition count was modelled using a poisson distribution and logit link function. 

Good model fit was confirmed using the DHARMa package [189], and the pscl package [190,191] 

was used to produce the zero-inflated poisson models when needed. Pheromone deposition was not 

the focus of the current study, but we include it as descriptive data since it may shed light on how 

individual perception can shape group choice. We modelled pheromone deposited towards the nest 

and pheromone deposited on the way back separately, since these are conceptually very different: 

depositions towards the food reflect the ants’ expectation, and depositions on the return to the nest 

reflect the ants’ perception. The models used were the following:

Pheromone towards the drop =

visit (2-8)*

value (molarity)+

random effect (ant nested in colony)

Pheromone back to the nest =

visit (1-8)* 

value (molarity)+

random effect (ant nested in colony)

Pheromone deposition data from each of the three experiments were analysed separately, as they 

were   taken   by   three   separate   experimenters,   and   so   could   not   reliably   be   compared   between 

experiments. Path decisions allow much less observer error, so Y-maze data can be pooled between 

experiments.

Only main results are reported below. For the full analysis see Appendix 2.

Results

Experiment 1 – Risk preference between options of equal absolute value

Y-maze choice tests

Ants were strongly risk averse, with 91% (58/64) ants initially choosing the safe option (figure 2.2) 

(GLMM  post-hoc with  estimated means, probability=0.911, SE=0.36, z=5.142, p<0.0001). We 
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found no effect of the first presented feeder (GLMM Analysis of Deviance, chi-square=0.709, DF 

=1,  p=0.3), nor of the first presented risky alternative (χ2=0, DF=1,  p=1), nor of the interaction 

between those two factors (χ2=0, DF=1,  p=1).

Figure 2.2 - Proportion of ants choosing the safe feeder. Ants prefer the safe feeder experiment 1 
(prob.=0.911, SE=0.36, z ratio=5.142, p-value<0.0001), where it always has a value of 0.55M, 
while the risky option can be either 0.1M or 1.0M.  They sill prefer the safe food in experiment 2 

(prob.=0.792, SE= 0.068, z ratio = 3.248, p-value =0.001), where it always has a value of 0.55M 
while the risky one changes between 0.1M and 1.5M. There is instead no preference in experiment 3 
(prob.=0.535, SE=0.086, z ratio=0.403, p-value=0.687), where the safe feeder has a value of 0.3M 

and the risky one fluctuate between 0.1M and 0.9M.

Pheromone deposition

Considering pheromone deposition towards the feeder, we found an effect of molarity (GLMM 

Analysis of Deviance, χ2=12.992, DF=2, p=0.001) and an effect of the interaction between molarity 

and visit number (GLMM Analysis of Deviance,  χ2=14.469, DF=2,  p=0.0007). Specifically, we 

found that the ants deposited overall more pheromone when going towards the 0.55M drop in 

comparison to the 1.0M drop (figure 2.3A, GLMM post-hoc with estimated means, estimate=0.657, 

SE=0.227, z=2.891, p=0.015). Note that the ant may be expecting to find the 0.1M drop when going 

towards the 1.0M, because it last experienced the low value associated with that scent. We found no 

differences in pheromone deposition between the other molarities. Overall, the ants deposited more 

pheromone on the way to the safe feeder relative to the risky one (GLMM post-hoc with estimated 

means, estimate=0.498, SE=0.19, z=2.616, p=0.036).

Considering pheromone deposited when returning to the nest, we found an effect of molarity 

(GLMM Analysis of Deviance, χ2=85.97, DF=2, p<0.0001), an effect of visit (GLMM Analysis of 
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Deviance, χ2=5.11, DF=1, p=0.024), but no effect of their interaction. Specifically, we found that 

the ants deposited overall less pheromone when going back from the 0.1M drop in comparison to 

the 0.55M drop (figure 2.3D, GLMM post-hoc with estimated means, estimate=-2.67, SE=0.154, 

z=-17.352, p<0.0001) and from the 0.1M drop in comparison to the 1.0M drop (GLMM post-hoc 

with estimated means, estimate=-2.78, SE=0.194, z=-14.308, p<0.0001). However, there was no 

difference between the 0.55M drop and the 1.0M drop. Overall the ants deposited more pheromone 

on the way back from the safe feeder relative to the risky one (GLMM post-hoc with estimated 

means, estimate=1.28, SE=0.14, z=9.149, p<0.0001).

Figure 2.3 – Amount of pheromone deposited by the ants going to the drop and back to the nest 
across visits in the three experiments. Considering the pheromone deposited on the way to the drop, 

we found a higher deposition rate for the safe feeder in experiment 1 (A) and in experiment 3 (C) 
but not in experiment 2 (B). Considering the pheromone deposited on the way back to the nest, we 
found a higher deposition rate for the safe alternative in experiment 1 (D) and experiment 2 (E), 

but not in experiment 3 (F).

31



SECTION 2 – COGNITION IN ANTS

Experiment 2 – Risk preference between options of different absolute value

Y-maze choice tests

Ants were again strongly risk averse, with 75% (48 / 64) ants initially choosing the safe option 

(figure   2.2)   (GLMM   post-hoc   with   estimated   means,   probability=0.792,   SE=0.068,   z=3.248, 

p=0.001). We found no effect of the first presented feeder (GLMM Analysis of Deviance, χ2=2.015, 

DF=1, p=0.156), nor of the first presented risky alternative (χ2=0.197, DF=1, p=0.657), nor of the 

interaction between those two factors (χ2=1.807, DF=1,  p=0.179).

Pheromone deposition

The data for the pheromone deposition are summarized in figure 2.3B and 2.3E.

Considering pheromone deposited towards the drop, we found an effect of the molarity (figure 

2.3B,   GLMM  Analysis   of   Deviance,  χ2=7.489,   DF=2,   p=0.024).   However,   post-hoc   analysis 

revealed no difference between any of the molarities: the differences were probably so small that 

Bonferroni correction in the post-hoc analysis brought them above significance.

Considering the pheromone deposited back to the nest, we found an effect of molarity (GLMM 

Analysis   of   Deviance,  χ2=133.424,   DF=1,   p<0.0001),   an   effect   of   visit   (GLMM,   chi-

square=10.249, DF=1,   p=0.001), and an effect of their interaction (GLMM,  χ2=11.339, DF=2, 

p=0.003). Ants deposited less pheromone for the 0.1M drop in comparison to the 0.55M drop 

(figure   2E,   GLMM   post-hoc   with   estimated   means,   estimate=-2.683,   SE=0.17,   z=-15.742, 

p<0.0001),   less   pheromone   for   the   0.1M   in   comparison   to   the   1.5M   (GLMM   post-hoc   with 

estimated   means,   estimate=-3.474,   SE=0.204,   z=-17,   p<0.0001)   and   less   for   the   0.55M   in 

comparison to the 1.5M (GLMM post-hoc with estimated means, estimate=-0.79, SE=0.19, z=-

4.144, p=0.0001). Overall the ants deposited more pheromone on the way back from the safe feeder 

relative   to   the   risky   one   (GLMM   post-hoc   with   estimated   means,   estimate=0.946,   SE=0.14, 

z=6.341, p<0.0001).

Experiment 3 – Risk preference between psychophysically-balanced options

Y-maze choice tests

53% (21/40) of ants chose the safe option (figure 2.2), a proportion not different from chance 

(GLMM post-hoc with estimated means, probability=0.535, SE= 0.086, z=0.403, p=0.687).
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We found an effect of the first presented feeder (GLMM Analysis of Deviance, χ2=4.424, DF=1, 

p=0.0354). Specifically, 71% of the ants presented with the safe feeder in visit 1 choose the safe 

smell during testing, while 35% of the ones initially presented with the risky feeder did.

Pheromone deposition

Considering pheromone depositions towards the feeder, we found an effect of molarity (GLMM, 

chi-square=16.133, DF=2, p=0.0003). Ants deposited more pheromone when going towards the 

0.3M drop in comparison to the 0.9M drop (figure 2.3C, GLMM post-hoc with estimated means, 

estimate=10.444, SE=1.751, z=3.769, p=0.0007), while we found no difference between 0.1M and 

0.3M (GLMM post-hoc with estimated means, estimate=0.477, SE=0.174, z=-2.032, p=0.169) and 

between   0.1M   and   0.9M   (GLMM   post-hoc   with   estimated   means,   estimate=4.981,   SE=3.452, 

z=2.317, p=0.082). Overall, ants deposited more pheromone for the safe feeder (GLMM post-hoc 

with estimated means, estimate=4.679, SE=1.751, z=4.124, p=0.0001).

Considering the pheromone deposition back to the nest, we found an effect of molarity (GLMM, 

χ2=47.083, DF=2,  p<0.0001). Ants deposited less pheromone when returning from the 0.1M drop 

in comparison to the 0.3M one (figure 2.3F, GLMM post-hoc with estimated means, estimate=-882, 

SE=0.143, z=-6144, p<0.0001), less for the 0.1M in comparison to the 0.9M (GLMM post-hoc with 

estimated   means,   estimate=-1.479,   SE=0.18,   z=-8193,   p<0.0001)   and   less   for   the   0.3M   in 

comparison to the 0.9M (GLMM post-hoc with estimated means, estimate=-0.597, SE=0.165, z=-

2.615, p=0.001). Overall the ants deposited the same amount of pheromone on the way back from 

the safe feeder relative to the risky one (GLMM post-hoc with estimated means, estimate=0.142, 

SE=0.126, z=1.134, p=1).

Discussion

Ants show strong risk aversion given equal average pay-offs between the risky and safe options 

(0.1/1.0M vs. 0.55M, experiment 1). Even if the risky option offers 45% higher mean pay-offs than 

the safe reward (0.1M/1.5M vs. 0.55M), ants still show strong risk aversion (experiment 2). We 

predicted, based on psychophysical principles, that logarithmically-balanced rewards should be 

perceived as having equal value. We tested this in a situation where the risky reward offered 66% 

higher pay-offs than the safe reward (0.1/0.9M vs 0.3M) and observed, as predicted, indifference 

between the two options.
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Support for the perceptual basis of risk sensitivity

Our   demonstration   of   risk   aversion   in   resource   amounts   strongly   supports   the   perceptual, 

descriptive theory of risk sensitivity proposed by Kacelnik & Bateson [147] and developed by 

Kacelnik & El Mouden [148]. Specifically, our data suggest functional risk aversion arising from 

risk neutrality  filtered through logarithmic  perception. Budget  Rule theories  [146] would also 

predict risk aversion in our context, since the ants are on a positive energy budget – Lasius niger 

would survive for over a week without feeding. However, our ability to accurately predict an 

indifference point based on logarithmic perception strongly implies that perceptual mechanisms are 

driving risk aversion in this species. Alternatively, we may have by chance chosen the precise point 

where logarithmic balancing matches the balance point between improved average gains from a 

risky option and the premium garnered by a safe bet according to the budget rule. However, this 

seems unlikely. 

The ants in our experiment never showed a preference for the risky alternative. This may seem to 

imply that the ants were failing to learn the risky option, and associate it with an odour. However, 

this hypothesis can be ruled out, as it cannot account for the results of experiment 3, where neither 

food sources were preferred. If the ants were unable to learn the risky option, the only other 

explanation for experiment 3 would be that a 0.3M is not preferred over complete uncertainty. This 

can be ruled out, however, as ants clearly preferred 0.3M over 0.1M (Appendix 1).

The Budget Rule is neither supported nor refuted

Budget Rule theories [146] would also predict risk aversion in our context, since the ants are on a 

positive energy budget – Lasius niger would survive for over a week without feeding. However, our 

ability to accurately predict an indifference point based on logarithmic perception strongly implies 

that perceptual mechanisms are driving risk aversion in this species. Our data neither supports nor 

refutes the Budget Rule [144,146,149]: we tested all ants after exactly 4 days of starvation, so we 

cannot know how ants would have behaved on a different energy budget. Lim et al. [149] strongly 

critiqued the Scalar Utility Theory, since it predicts suboptimal behaviour, which should be selected 

against. Logarithmic perception, however, is a widespread phenomenon in the animal kingdom, 

from roundworms [192] to humans [155], and is argued that the logarithmic scale is the best 

possible neural representation of magnitudes amongst other biologically feasible scales [193]. A 

more precise food evaluation may require more energy than the energy gained from the additional 

precision, and may not be able to fit inside a miniature brain. However, this has never been tested in 
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the context of risk sensitivity [149]. Even if the benefits accrued from a more linear perception of 

value   would   outweigh   the   costs,   developmental   constraints   or   pleiotropy   may   prevent   such 

perception from evolving.

Lack of support for Prospect Theory

Other theories of risk sensitivity based on perceptual mechanisms exist. Prospect Theory [151], a 

hugely influential economic theory of decision-making under risk in humans, predicts that an 

individual should be risk averse in the context of gains but risk prone in the context of losses. This 

again derives from logarithmic perception of cumulative gains and losses. However, in Prospect 

Theory the dividing point between gains and losses is not necessarily at zero. Rather, gains and 

losses are defined relative to a reference point, which is usually the expected pay-off, but may be 

socially induced (e.g. by comparing ones own salary to that of ones colleagues). Anything above the 

reference   point   is   perceived   as   a   gain   and   anything   below   the   reference   point   is   a   loss. 

Disappointment   for   a   lower   value   after   a   reference   has   been   established   has   already   been 

demonstrated in the honeybee [194] and ants  [180], and suggested in bumblebees  [195]. The 

reference point for our colonies might have been 0.5M: the solution that the ants are regularly fed 

on. If this were the case, in experiment 1 the true choice would be between an always neutral value 

(0.55M, safe), and a risk between a gain (1.0M) and a loss (0.1M). This hypothesis is also supported 

by the fact that almost no pheromone was deposited for the 0.1M drop. In this case Prospect Theory 

would still predict risk aversion, as losses are assumed to be perceived more strongly than gains. To 

test this hypothesis we repeated experiment 1, but with colonies that had been fed ad libitum 1.5M 

sucrose 1 month prior testing (data and procedure can be found in ESM1). If the ants were taking 

their standard feeding solution as a reference point, every presented solution in this experiment 

should have been perceived as a loss, and so the ants should have showed risk-seeking. However, 

we observed the same preference that we saw in the main first experiment – strong risk aversion. 

Either the ants behaviour is poorly described by Prospect Theory, or the normal feeding solution 

does not set the reference point. Another possibility is that the reference point is not set by the 

normal feeding solution, as the four-day food deprivation period may erase the ants memory of the 

feeding solution. Instead, the reference point could be the most common solution in the current 

context. In experiment 1 this would be 0.55M, maintaining the same situation of one neutral vs. a 

loss   or  a   gain,   and   so  predicting   the   same   outcome   under   Prospect  Theory.  This   hypothesis, 

however, does not fit the result obtained in experiment 3: if the 0.3M would have been taken as a 

reference, we should still have observed a preference for the safe option. Either Prospect Theory 
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does not well describe the behaviour of ants, or their reference point remains at 0 in every situation, 

with every reward being a gain: in the domain of gains Prospect Theory predicts simple logarithmic 

value perception.

Risk neutrality at the colony level

Does our understanding of individual behaviour in a risk-choice situation help explain the risk 

indifference of ants at a colony level [173]? Pheromone deposition rates of individual foragers vary 

hugely   between   individuals,   even   when   presented   with   identical   food   sources.   This   is   to   be 

expected, given the fact that individual variability may aid collective decisions [196,197] . However, 

the appropriate measure of pheromone for colony-level decisions is total pheromone deposited. 

Examining the mean deposition rates for both feeders in experiment 1, we see that ants, on average, 

deposited more pheromone to the safe feeder (5.5 dots per ant) than the risky feeder (3.9 dots per 

ants). In Hübner & Czaczkes [173]  each ant made only one or two visits to the feeder, but even 

when considering only the first two visits ants made more pheromone depositions to the safe (1.5 

dots per ant) than to the risky (0.89 dots per ant) feeder. The finding of risk neutrality at the colony 

level is, thus, still a puzzle. However, the two experiments are not directly comparable. Firstly, in 

the   current   experiment   pheromone   was   removed   from   the   trail   after   every   visit.   Pheromone 

presence   is   known   to   reduce   further   pheromone   deposition   [198],   perhaps   damping   out   the 

differences between the two feeders. Secondly, the presence of odours on a path affects pheromone 

deposition: while pheromone deposition on odourless paths is usually higher on the nest-ward 

journey [174,198–200], pheromone deposition is higher on outward journeys on scented paths [this 

study,98,179]. Finally, it should be noted that perception of pheromone, much like perception of 

quality, is also logarithmic [201], thus emphasising initial differences in pheromone concentration 

but damping out differences between strong trails. Nevertheless, it seems that colony-level decision-

making effectively filters out the ants individual perceptual constrains [this study, 177], but the 

mechanism used to achieve this is still unknown. 

In this study, we found that ants demonstrated risk aversion due to a logarithmic perception of food 

value. Individual risk preference does not predict colony behaviour, which seems able to filter out 

perceptual biases.
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Study 2: Multi-modal cues integration in the black garden ant
This study is under second review [202]

Introduction

As discussed above, cognition may be beneficial for minutes brain, as a small, complex network can 

use a rule or a mechanism to categorize a massive amount of stimuli that may could not be 

individually registered otherwise. This may be of even a greater importance in tasks that require 

learning: the information overload can quickly become too much to bear for a small brain. Even 

though which information is processed and how it is remembered can vary greatly, remembering 

the past is an ability of great importance for many animals. One of the most widespread and most 

well-understood mechanisms is to establish associations between a reward (e.g., food) and an event 

in the environment occurring at a defined time interval (e.g., a bell ring) (Classical conditioning 

[203]). This learning mechanism is dependent on the amount of information: an animal needs to 

associate the unconditioned stimulus to the conditioned one. This can be done for many different 

stimuli, but each one of them needs to be independently associated to a reward. Apart from learning 

and remembering relationships between stimuli or between behaviour and its outcome (Operant 

conditioning [204]), humans possess autobiographical memories of episodes of their own lives. 

Such episodic memory (EM) is defined as the subjective consciousness of a self-experience in terms 

of what (first school day), where (school) and when (in the morning) something happened to the 

individual   [205,206].   These   episodes   contain   a   multitude   of   information   coming   from   many 

different sensory origins. However, they are not registered one by one, since the episode is a 

cohesive unique memory [207].

For a long time, EM was considered a human prerogative [208]. This is not surprising, because only 

humans can self-report their knowledge of past events (in its what-when-where components) in a 

first-person perspective. For this reason, it is impossible to test the presence of EM in other animals 

using paradigms of human studies, as we can only infer animals’ internal states indirectly from their 

behavioural   responses.   However,   an   animal’s   incapability   to   provide   verbal   reports   does   not 

necessarily   imply   the  absence  of  egocentric   memories. To  overcome   such   restrictions,  animal 

studies focus on the presence of three defined EM components (what-where-when) to infer the 

presence of EM. Researchers adopted the term episodic-like memory (ELM) when referring to non-

human evidence of EM to point out this fundamental difference [209]. Remembering an individual 

past event can, in fact, be very useful as the recognition of similar situations allows to adjust 
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behaviours to a predictable future (e.g. by recognizing a situations’ where-when components to 

predict the concurrent What). 

In a pioneering study, Clayton and Dickinson [207] showed that Western scrub-jays recovered 

perishable worms, or non-perishable peanuts (what) from their caches (where) depending on how 

long the food was hidden (when). These results were successfully replicated [210] and adapted to 

other animal models (i.e., pidgeons [211], mice [212], dogs [213], bees [214], cuttlefish [215]). All 

these studies support the idea that ELM is not uniquely human. In the last decade, it has been 

suggested to further conceptualize animal ELM by using the components of what-where-which, 

assuming that  the  context  information (which)  is  ecologically  more relevant  for animals  with 

respect to the exact point in time (when) [216].

Regarding potential benefits from an ability to recall a single past event with all its characteristics, 

the ant represent a promising organism. Individual foragers make long foraging bouts during which 

they memorise multiple cues from different information modalities [217,218]. These different cues 

can be interpreted as what-where-which components.  

Concerning the “which” component, ants  often rely on visual cues  during navigation using a 

mechanism called snapshot matching [218–220], where they compare the current view to snapshots 

memorised   from   the   surrounding   landscape   in   previous   visits.  The   discrepancies   between   the 

current   view   and   the   saved   snapshot   allows   the   ant   to   orient   itself   in   space.  The   wide-field 

surrounding   and   context   (panorama)   strongly   influences   recall   in   ants   [221,222].   Relying   on 

panoramas instead of distinct visual landmarks also accounts for the often low spatial resolution of 

ants’ eyes [222]. In other words, ants tend to memorise the overall visual context rather than 

specific landmarks in the environment. This information is consistent with the “which” component 

of an episode. Apart from the panorama, ants are also able to perceive colours and associate these 

with rewards [223,224; Appendix 3].

Olfactory cues are heavily used in ant navigation, often in the form of trail-pheromone [83,225], 

and in species that navigate without trail pheromones [226–230]. Characteristic olfactory landmarks 

help to locate food or the nest, and odours can help to recall abundant food sites [231] or induce 

active searches for the sites [232]. Moreover, ants are able to learn different odours [228–231] and 

to obtain odour-reward associations even after a single exposure [233]. Such use of odour cues as 

landmarks could correspond to the ELM “what” component.
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It is crucial to point out that the multi-modal nature of the different cues used in insect navigation 

[218,228,234] amplify the expected correctness over a single-cue system. Ants can in fact extract 

and   learn   bimodal   cues   (visual   and   olfactory)   simultaneously,   and   their   combined   presence 

enhances each other’s conspicuousness, thus favouring the learning process [228]. Such synergism 

is indicative of a neural integratory system of information from different modalities [217]. It has 

been proposed, that multiple cues are registered according to their expected predictive power of the 

presence of a reward. These are then compared and combined in order to accurately pinpoint the 

nest or food sources, averaging the different cues into a cohesive decision [219,220,235,236].  

However, to our knowledge, ants have never been tested in a task where the predictive power of 

every cue is dependent on the presence or absence of another in a conditional manner: an olfactory 

cue may not be able to predict the presence of a reward, unless a contextual cues is concurrently 

presented. In this situation, it will not be sufficient for the cues to be compared for their predictive 

power, but they will need to be integrated in a cohesive, single memory linked with another. 

In this paper, we aim to establish ants as model organisms for the study of ELM in an invertebrates. 

We first tested  Lasius niger  ants in a Y-maze in which they had to integrate olfactory (what), 

contextual (which) and spatial (where) cues across 12 training trials to obtain a reward. With this 

first experiment we tested the ability of these animals to register and integrate all three components 

together. As described above, EM is defined as the memory of a single past event, not as a formed 

association between multiple conditional stimuli. Therefore, we designed a second experiment, 

where we presented the ants with the what-where-which situation in a single unexpected event at 

the end of a training procedure.

Methods

Subjects

We  used   4  queenless  Lasius   niger  colony   fragments   collected   from   different   colonies   on   the 

University of Regensburg campus consisting of ~1000 workers each. Queenless colonies behave 

normally and are often used in foraging experiments [237,238]. Each fragment was kept in a plastic 

box (30×20×40cm) with a floor of plaster and a circular plaster nest (14 cm in diameter and 2 cm 

thick). Temperature (21-25°C) and humidity (45-55%) were kept constant, and colonies were kept 

in a 12:12 light:dark cycle. Each colony was fed 0.5M sucrose solution ad libitum and was deprived 

of food 4 days prior to each test. Water was provided ad libitum.
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Experiment 1 – Information integration

The aim of this experiment was to discover if ants are able to learn a visual context (which), a side 

(where) and a scent (what) simultaneously. While the scent was always predictive of the location of 

a reward, side and context were predictive only when considered together, not by themselves. To 

this end, ants were trained on a Y-maze to associate a scent (what, either lemon or rosemary) 

presented on the maze arm to a 1.0M sucrose (Merck KGaA, Darmstadt, Germany) solution drop. 

The side of the rewarded arm alternated side (where, left or right) consistently with the colour of the 

background (which, e.g. when the Y-maze had a blue background, reward was on the left, when the 

background was yellow, reward was on the right). During the test phase, the rewarded scent, which 

represented  the  only  reliable  information  per se,  was   applied  on  both  arms   and thus   became 

uninformative. To locate the reward, ants therefore had to integrate background colour with side in 

order to find the reward. A schematic representation of the procedure is available in figure 2.4.

Training

In the training phase, ants were allowed on a 15-cm long, 1-cm wide runway (referred to as entering 

runway) that led to a Y-maze (arm length 10 cm, bifurcation angle 120°). Both the stem of the Y 

maze and the entering runway were covered with unscented paper overlays. The two arms were 

covered with paper overlays of a different scent each. The scented runways were prepared by 

placing the paper overlays  in an enclosed box containing 100µl  of either rosemary or lemon 

essential oil. Ants have been shown to not have any innate preferences for either [239]. The paper 

overlays were left in the box for at least two hours before being used. The maze was tapered at the 

bifurcation to ensure that ants perceived both scented arms at the same time (following [182]). One 

of the two arms led to a drop of 1.0M sucrose solution, corresponding to a high-value reward for 

Lasius niger [181]. The other arm led to a drop of water, visually similar but bearing no reward. 

Around the Y-maze, a 5cm tall wall was placed. The wall surface could either be blue or yellow. In 

a pilot experiment, we demonstrated that ants can clearly distinguish between these two colours (see 

Appendix 3). The first ant that reached the sucrose drop and started drinking was marked with a dot 

of paint and allowed to drink until satiation while all other ants were put back into the nest. After 

drinking fully, it was allowed back to the nest to unload the sucrose to nest-mates via trophallaxis 

(mouth-to-mouth feeding [81]).

After unloading, only the marked ant was selectively allowed onto the setup using a movable bridge 

11 more times, resulting in a total of 12 training visits. On each visit, the position of the rewarded 
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scent was changed, so that both sides were rewarded in alternation across visits. The wall colour 

was changed accordingly, in order to always have the same colour associated to the same side. For 

each visit, we recorded (i) pheromone depositions on the way towards the drop and on the way back 

to the nest, both were recorded only on the scented part of the setup (pheromone deposition is a 

stereotyped behaviour in L. niger and can be quantified by eye [225]); (ii) the ant’s initial decision, 

scored when the ant crossed a decision line 2-cm inwards of a Y-maze arm; and (iii) the final 

decision, scored when the ant crossed a decision line 8cm inwards of an arm. For each ant the 

rewarded scent was kept constant, but we randomized the rewarded scent, background colour at 

start, rewarded side at start and colour-side associations across ants.

Figure 2.4 – Schematic representation of the procedure for experiment 1. During training, the ants 
were let onto a Y-maze. During a first visit (number 1 in the picture) one of the arms of the Y-maze 
led to a was coated with lemon scented paper (light grey) and led to a 1.0M sucrose solution (S+). 
The other arm was coated with rosemary scented paper (dark grey) and led to a water drop (Sn). 

The walls around the Y-maze could either be yellow or blue (dashed or solid line around the maze). 
The colour of the walls and the position of the rewarded scent (left or right) were always associated 
(e.g. blue walls, lemon on right, yellow walls, lemon on left). After the first visit the ant was let back 

to the nest, the position of the scent was switched as well as the wall colour (as number 2 in the 
picture) Across the total of 12 training trials that were performed wall colour and consequently the 

position of the lemon scent were alternated. In the testing phase, we removed the scented paper 
predicting Sn (rosemary) and left the rewarded scent on both arms. At this point the scent 

information became uninformative. To still be able to locate the reward, the ants needed to 
remember that when the walls are blue, reward could have been found on the left, and vice-versa 
with the yellow walls, effectively demonstrating the ability to integrate side (where) and colour 

(which) information. Rewarded scent (lemon or rosemary) and colour-side association were 
balanced across individuals.
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Test phase

Ants were tested on the 13th visit to the Y-maze. No sucrose was present in the test visit. The 

background colour was either blue or yellow. The rewarded scent, however, was now placed on 

both arms of the maze and thus made uninformative. Now, ants were only able to choose the 

“correct”   arm   (consistent   with   the   colour-side   association)   if   they   concurrently   learned   the 

association between background colour and side during training. After the tested ant reached the 

end of either arm, it was allowed on a piece of paper and gently placed back to the Y-maze stem, in 

order to repeat the test. This way, each ant made 5 decisions during the test phase, providing an 

estimate of choice reliability and drop-out probability.

Experiment 2 – Information integration in an episode

Experiment 1 demonstrated that ants learn the association between background colour and side 

despite the presence of scent as sufficient predictor for reward during training (see results). In this 

second   experiment,   we   tested   if   ants   were   still   able   to   succeed   in   the   testing   phase   after 

experiencing the colour-side combination only once. This would require the ability to retrieve a 

single   event   and   its   features   and   is   consistent   with   the   definition   of   episodic   memory   (see 

introduction), as opposed to associative learning, which strengthen incrementally over visits.   A 

schematic representation of the procedure is available in figure 2.5.

Training

In this experiment, the training setup was a 10-cm long and 1-cm wide runway instead of a Y-maze. 

This runway was scented and a drop of either water or 1.0M sucrose solution was placed at its end. 

The scent of the runway was consistent with the drop quality, in order to let the ant form an 

association between the scent and the reward. As before, multiple ants were allowed on the setup; 

the first ant that started drinking on the drop was marked and the others moved back to the nest. 

Only the marked ant, thereon, was allowed onto the setup for 5 further training visits, resulting in a 

total of 6 visits (including the first). Each visit alternated between sucrose solution (visits 1,3,5) or a 

drop of water (visits 2,4,6) and the overlay scent was alternated accordingly, so that one scent 

always predicted a reward while the other always predicted a water drop. The rewarded scent was 

balanced between ants. For each visit we recorded pheromone deposited both on the way to the 

drop and on the way back on the 10cm long scented overlay.

On the 7th visit, ants were confronted with a Y-maze identical to the training setup in the first 

experiment. The two arms presented the two scents (lemon and rosemary), and the walls were either 
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be blue or yellow. At the end of one arm, a 1.0M sucrose solution was placed and a water drop was 

placed on the other, according to the scent-reward association established in visits 1-6. The 8 th visit 

was identical to the 7 th, but both the rewarded side and the colour of the wall were switched. For 

both of those visits, we recorded the number of pheromone depositions on the scented portion (on 

the way to the drop and back) and the side choice, as described for the first experiment. The latter in 

particular was used to assess whether the ants had learned the scent-reward association. These two 

visits were used to make the ants experience the association between spatial (where, side) and 

contextual (which, wall colour) information, other than the conditioned stimulus (what, the scent). 

In both visit 7 and 8 the ants could have integrated together all the information to form a cohesive 

memory of an episode. We needed to present an event for each colour and side to prevent the ant 

from exclusively relying on either the side or the background colour as predictor for food presence.

Figure 2.5 – Schematic representation of the procedure in experiment 2. In the training phase the 
ant was initially let onto a straight runway. This could have been covered with lemon scented paper 

(light grey) and leading to a drop of 1.0M sucrose solution (S+), or with rosemary scented paper 
(dark grey) and leading to a drop of water (Sn). In this experiment the runway were surrounded by 
white walls. Across the 6 trials we alternated the two scents and consequently the reward with the 
neutral. After the first 6 training trials the ant was let onto a Y-maze, with the exact same setup of 
the training phase in the first experiment. The Y-maze training was repeated for only two trials, to 
let the ant experience each combination (e.g. blue walls, lemon on the left, yellow walls, lemon on 
the right) once. After these last two training trials, the ants were tested with the same procedure 

used for experiment 1. Here, to still predict the reward position, the ants not only needed to 
integrate all the available information during training, but also had to be able to do so 

remembering only a single event.
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Test phase

The test phase was identical to experiment 1: the rewarded scent was presented on both arms of the 

Y-maze and thus made uninformative. No water or sucrose solution was presented on either side. 

The   wall   colour   was   either   blue   or   yellow.   If   ants   remembered   an   episode   in   which   they 

experienced   the   rewarded   scent   being   on   one   particular   side   with   one   particular   coloured 

background (visit 7 & 8), they should be able to choose the “correct” arm. Colour of background, 

colour-side association and correct scent were balanced between ants, as well as background colour 

order in visits 7 and 8. During the test, we recorded the initial and final decision of ants, as 

described in experiment 1. After the tested ant reached the end of one arm, it was allowed onto a 

piece of paper and was gently placed back on the Y-maze stem to repeat the test. As in experiment 

1, each ant was tested 5 times to assess choice reliability as well as dropout probability.

Statistical analysis

Statistical analyses were carried out in R 3.3.3 [183]. Following Forstmeier and Schielzeth [240], 

we only added factors in the models for which we had a priori reasons for including, namely correct 

scent (lemon or rosemary), correct side (left or right) and wall colour (blue or yellow). Our primary 

dependent variable was the binomial arm choice of the ants. We also include analysis on the 

pheromone deposition in Appendix 4 (we decided to not include it in the main paper as pheromone 

is often interpreted as a measure of relative preference. Since in all our tests the ants had to choose 

between either a reward or nothing, therefore the relativeness was less crucial). As we found no 

difference between initial and final decisions, only the initial decision was used in the analysis (see 

Appendix 4 for the supporting analysis).

To see in which of the trials the ants learned the association between the scent and reward, we 

looked at ant choice during training visits. Given the fact that we had multiple observations of each 

individual, and that some individuals were from the same colony, we employed generalized linear 

mixed effect models using the package lme4 [185], with ants nested in colonies as a random 

intercept effect. Y-maze choice data was coded as a binomial data (1 for choosing rewarded and 0 

for choosing unrewarded scent) and so were modelled using a binomial distribution with a logit link 

function. We then carried out a post-hoc analysis with Bonferroni correction using the package 

emmeans [187] to test each visit probability against chance level.

Subsequently, we analysed ant choice during the test phase. We only included the first testing trial 

of   each   ant   (see  Appendix   4   for   the   full   analysis   regarding   testing   repeated   measures),   and 
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accordingly added colony as a random intercept effect. We then used the package car [186] to test 

which factors of the model had a significant effect on the dependent variable.

We tested model fit using the DHARMa package [189]. When needed, we used a zero-inflated 

model with the pscl package [190,241]. Plots were generated using the packages ggplot2 [242] and 

cowplot [243].

Results

Only the main results are reported below. For the full analysis see Appendix 4.

Experiment 1 – Information integration

During training, in the second visit 62.5% (20/32) of the ants choose the correct scent (GLMM post-

hoc with estimated means, probability=0.683, SE=0.102, z=1.627, p=1). Already in the third visit 

the percentage rose to 75% (24/32) (GLMM post-hoc with estimated means, probability=0.831, 

SE=0.077, z=2.915, p=0.039), reaching 90% in the fourth visit (29/32) (GLMM post-hoc with 

estimated  means, probability=0.977, SE=0.025, z=3.443, p=0.002) and remaining more or less 

stable across all other visits. In the test trial, 87.5% (28/32) of the ants correctly chose the side that 

was   associated   with   the   background   colour   (GLMM   post-hoc   with   estimated   means, 

probability=0.875, SE=0.058, z=3.64, p=0.0003) (figure 2.6A). We found no effect of any of the 

modelled predictors.

Experiment 2 – Information integration in an episode

In both trial 7 and 8, 96.9% (31/32) ants choose the correct scent (GLMM post-hoc with estimated 

means, probability=0.969, SE=0.031, z=3.38, p=0.001). However, in the test phase, the percentage 

of ants correctly choosing the side associated to the presented background colour dropped to 65.6% 

(21/32) (GLMM post-hoc with estimated means, probability=0.656, SE=0.084, z=1.737, p=0.0823) 

(figure 2.6B). We found no effect of any of the modelled predictors.

Discussion

In the first experiment, Lasius niger ants were provided with an olfactory cue that fully predicted 

the location of a reward in a Y-maze along with contextual cues (maze wall colour and arm side). 

Yet, once the olfactory cue was made uninformative, 87% of ants were still able to integrate side 

and colour cues to successfully locate the correct arm of the maze. These results clearly demonstrate 

that foraging ants not only learn contextual cues in addition to the most predictive cue, but also 

integrate them to find a food source.
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Recent research suggests that insects can combine cues weighed by their uncertainty in the current 

context  [220,244–246]  rather   than   creating   information   hierarchies   in   which   one   cue   reliably 

dominates over the others. Accordingly, hierarchical-like decisions, in which it appears as if animals 

only learned one cue in the environment could, in fact, be based on a very strong weight on one cue, 

but still involve processing of additional cues. While, for instance, Myrmica foragers were found to 

rely predominantly on visual cues in bright light but switch to olfactory cues when light intensity 

decreased [247,248], such behaviour does not imply an exclusive reliance and learning of either 

cue. In our study, ants clearly did not use information in a strictly hierarchical order: if ants 

exclusively relied on odour cues, they would have performed at chance level in the test. 

Figure 2.6 – A: Probability of ants choosing the correct side during training visits and during test 
according to the GLMM model. Dots represent average probability, error bars are SE, dotted red 

line is chance level. Already in the second training trial performance was above chance level. In the 
test, the ants chose correctly even in the absence of odour cues (GLMM post-hoc with estimated 
means, probability=0.875, SE=0.058, z=3.64, p=0.0003). B: Probability of ants choosing the 

correct side during training visits with colour background and during test according to the GLMM 
model. Dots represent mean probability, error bars are SE, dotted red line is chance level. For both 

visit 7 and 8 performance is at 96%. In the testing trial, however, the probability of choosing 
correctly is not different from chance level (GLMM post-hoc with estimated means, 

probability=0.656, SE=0.084, z=1.737, p=0.0823). 

However, weighing of cues according to their uncertainty would also not lead to success unless the 

cues are not additively, but conditionally integrated. Weighed-cue integration combines multiple 

information sources by their level of certainty (i.e., predictive power). While such weighing can 

create a compromised prediction as a result of an additive integration process, the different cues do 

not influence each other, nor does the weight of one change the other. In our study, scents predicted 
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the presence of the reward with 100% certainty, while colour and side had only a 50% certainty by 

themselves, as each colour and each side were rewarded equally. The predictive power of colour 

with   side   becomes   100%   only   when   considered   conditionally:   if   colour  A  then   side   B,   thus 

switching from an additive weighed process to a conditional one. Such learning of additional, 

seemingly redundant, information about the environment might initially demand higher costs, but 

can greatly decrease susceptibility to environmental perturbations and risk of disorientation when 

foraging [228,245,249,250], and, thus, it is worthy for the animal to invest energy.

It has already been demonstrated that ants can acquire information through very few or sometimes 

even single expositions. Studies demonstrated that ~70% of L. niger ants can learn a feeder location 

after only one visit [99,198,251], as it seemed to happen in our first experiment, where 68% of ants 

chose the correct odour on the second trial, ~80% of ants made a significant choice towards the 

correct side at the third visit and reached almost 100% at only the fourth visit in experiment 1. The 

66% of correct choices we observed in the test of experiment 2 seems to suggest the same single 

trial learning effect, although our sample size was  not sufficient to find significance. We are 

however aware that changing the sample size after having collected and analysed the data can often 

lead to type II errors, so we decided to discuss and present the data as it is. Nonetheless, trial 2 of  

experiment 1 and the test of experiment 2 vary fundamentally in their levels of complexity: even 

though all three components are presented in both cases, in experiment 1 the scent alone had 100% 

predictive power. The 68% ants that could solve the task might have been the ones more likely to 

learn scents, or better associative learning altogether. In contrast, visit 7 of experiment 2 confronted 

ants with two novel cues, not predictive in themselves, while a perfectly reliable odour cue was 

present simultaneously. In an associative learning context, we should have observed an effect of 

blocking [252]. Moreover, the amount of cues in this case that needed to be registered in a singe 

trial is double: to be able to find the reward in the following test the ant did not need only scent, as 

in the second trial of experiment 1, but it required both colour and side combined. The fact that the 

same percentage of ants chose correctly in a situation where one cue would have sufficed (scent 

cue, experiment 1) and in a situation where stimuli had to be combined (colour and side, experiment 

2) suggests that the learning process employed by the ants is information amount independent, as 

would be expected of an ELM based mechanism. 

To conclude, the results of our first experiment show that  Lasius niger  ants extract and readily 

combine contextual cues while foraging to locate a food source. This ability may rely on weighed 

cue integration with the addition of a sophisticated integration process on top of an additive one. 
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Moreover, we found a striking similarity in performances in the experiment 2 test phase and the 

second training trial of experiment 1. The similarity between these two suggest that information 

load had no effect on performance. This study gives the first evidence of information integration 

(what-where-which) ability on ants, surpassing the additive multi-modal recording. This ability 

constitutes the basis of ELM, and it might be active on single episodes. 

Ants appear to be an optimal candidates for the investigation of ELM, especially considering their 

increases in navigation accuracy when using multisensory information instead of single elements 

[228,245,249,250]. Future studies should further explore the presence of episodic memory in ants, 

whose required building blocks have been presented in this study.
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The jumping spider as a model species for cognition

The jumping spider as a model species for cognition
We, as humans, are often biased in the categorisation of animals. We tend to perceive some to be 

very different to each other, like a dog from a deer, while some others as very similar, like an insect 

and a spider, as also the common names suggest (“deer” is much more specific that “insect”). We 

are better able to categorise how different two species are depending on the familiarity we have 

with them: a same-race effect [253] extended for animal species. When discussing behaviour, brain 

and their evolution we have to be careful in avoiding this bias and always keep in mind the 

phylogenetic relationship between the species. Spiders and insects are related at the level of the 

phylum: Arthropoda. This means that they are even more different to each other than a chimpanzee 

is to a fish (related at the level of the subphylum: Vertebrata). As discussed in the previous section, 

we   cannot   generalize   the   abilities   that   we   have   observed   in   bees   to   the   entirety   of   order 

Hymenoptera (as we would not assume cognitive abilities found in dolphins are also present in 

rodents), let alone to spiders. 

For these reasons we extended our study onto a completely different species of invertebrate: the 

spider’s Family Salticidae. As the name implies, this spider Family is unique in the fact that it 

actively stalks its preys thanks to their ability to jump, sometimes for distances of several body 

lengths. However, jump is far from being the only skill that these spiders possess: these animals are 

marvellous hunters that catch dangerous and bigger preys by outwitting them [254]. It is exactly 

because of their surprising hunting strategies that scientists, started looking into the neural and 

cognitive bases of these outstanding behaviours. 

The first evidence came from the genus Portia, which has been observed in nature to take detours in 

order to reach its prey unseen [255] (but note that this behaviour has also been observed in other 

species [256]. Subsequent studies have investigated this ability thoroughly, describing how Portia 

can plan its movements in order to reach a target [257] thanks to a pattern of movement that lets 

them   scan   the   environment  [258–260].   Many   other   abilities   have   been   studied   by   scientists, 

amongst which are numerical cognition [261],   learning  [262–265], problem solving  [266–268], 

spatial cognition [269,270], attention [271,272] and planning [273,274]. Barrett [275], however, 

raised the point that these behaviours may be the result of automatic, preprogrammed processes, 

instead of cognition. It is indeed true that many studies lack direct control to discriminate between 

complex cognition and more simple preprogrammed patterns, focusing mostly on the behaviour 

itself rather than on the underlying processes.  It is uncontested  that this Family is a promising 
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model for the study of cognition. In the following paragraph I will describe the structure of its brain, 

with particular attention to the visual system.

Jumping spiders’ neurobiology
Every spider’s body is divided into two sections [276]. Starting from the back, the first section is 

called opisthosoma, or abdomen. This is presented as a soft and sack-like body, and it contains most 

of the internal organs (lungs, heart, intestines and ovaries in the females). At the back end of the 

opisthosoma the spinnerets are present, which are the appendices engaged with the silk production. 

On the opposite end the abdomen, the prosoma is connected to the frontal section trough a narrow 

stalk called pedicel. From the prosoma develop all the remaining appendages of the spider: the four 

pairs of legs, the palps pair and the chelicera. The prosoma also contains the 4 pairs of eyes. It is 

inside this anterior section that lays the spider’s brain.

The central nervous system

Differently from what has been said for hymenoptera, the brain of spiders is far less understood and 

the function of many areas is still debated today. For this reason, this thesis focuses more on the 

description of the nervous system, highlighting the areas similar to the ones of Hymenoptera and 

describing the existing controversies. The first description of the spider nervous system has to be 

attributed to Saint-Remy [277], which was however strongly limited by the technology of his time, 

preventing any appreciation of fine anatomy. With the invention of Golgi’s staining technique [278] 

new possibilities opened up. Hanstrom [279] layed the basis for all the subsequent work carried out 

in the 1970’ and 1980’ [e.g., 54,55,57], recognizing the homology between different areas of the 

spider brain with the ones of insects and crustaceans (that will be more in depth described below. 

Our current knowledge on the spider brain is mostly based on the study of Cupiennus salei (Family: 

Ctenidae) [55,280–283]. We also have some description of different species of Salticidae, including 

Phidippus johnsoni  and  claurus  [57],  Phidippus carneus  [283],  Phidippus regius  [284],  Salticus 

scenicus  and  Habrocestum pulex  [285], and lastly by the very recent descriptions of  Marpissa 

muscosa’s brain anatomy [56] and development [286]. 

The spider central nervous system consists in a fused mass of nervous tissue, comprised of multiple 

segmental ganglia [57,276], for this reason named Synganglion [56]. The brain of spiders can be 

described   following   different   criteria   of   subdivision.   For   example,   this   mass   can   be   divided 

horizontally from the point in which the oesophageal tube traverse it, into supra-oesophageal and 

sub-oesophageal ganglion. The division, however, is purely abstract because there is generally no 
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clearly   discernable   border   between   the   two.   For   the   purpose   of   this   thesis,   we   will   use   the 

description used by Steinhoff et. al. [56], which divides the brain according to its evolutional history 

and, consequently, its functional properties. The spider nervous system is composed of different 

neuromeres: the “protocerebrum”, “deutocerebrum”, “tritocerebrum”, and four neuromeres that 

project and receive axons from the walking legs. On the back, also a 5 th unpaired neuromer named 

cauda equina connects the brain to the opisthosoma [276]. The latter neuromeres are referred to as 

ventral nerve cord, and correspond to what we would consider a spinal cord in mammals. The first 

three, on the other hand, are referred to as “syncerebrum” or, more simply, brain (figure 3.1). The 

deutocerebrum is responsible for the control of the chelicera, while the tritocerebrum for the control 

of the pedipalps, which have a sensory functions. The protocerebrum contains the visual system of 

the spiders, of great importance especially in Salticidae, that possess the highest visual acuity 

amongst the entire arthropod phylum [287]. The protocerebrum is the most extended neuromer of 

the syncerebrum, being even more expanded in Salticidae in respect to other Families of spiders.

The eyes

Most spiders possess four pairs of eyes devoted to different tasks. Different families of spiders have 

eyes arranged into different positions and with different relative sizes, depending on the importance 

the eyes have for each species. In Salticidae, the eyes can be divided into two distinct categories: 

the principal eyes and the secondary eyes. Of course, the former name suggests their crucial role in 

the behaviour of Salticidae. These consist of a single pair of eyes called antero-median (AME). 

From the carapace surface of the spider, the AME present a cornea: a transparent, cuticular convex 

region;   immediately   below,   a   non   chitinous   lens;   and   behind,   a   cellular   vitreous   [288]. 

Subsequently, a long tubular structure extend inside the cephalothorax, culminating in the retinae 

and then the first optic tract [288]. A set of six antagonistic muscles surrounds the tubular eyes, 

moving and rotating the end of the tube and effectively reorienting the retinae [288]. The latter is 

composed of a long and narrow strip of receptors laying in a V-shaped section at the back of the 

tube. The receptors are not distributed on a straight line, instead they are bent in the “fovea” by 30°, 

generating a “boomerang-shaped” distribution. Because of the size of the strip of receptors, the 

visual field of each eye is narrow, around 5°, and the visual fields of the two eyes do not overlap. 

The resulting visual field of the two AMEs is “X” shaped, with a piece missing in the centre [260]. 

The receptors in the retinae are organized in 4 different layers, one on top of the other in respect to 

the light source. These layers are far enough from each others, that an object focused for one of the 

layers will be defocused on the other three [288]. For this reason some authors suggested that this 
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defocusing may very well be the mechanism by which the spiders judge distances [289], as they 

lack stereoscopic vision. The receptors in layers 1 and 2 (counting from the furthest point from the 

light) are well organized, tightly packed into a hexagonal lattice and green-light sensitive [288,290–

292].   Layers   3   and   4   instead   are   composed   of   less   organized,   UV-sensitive   cells  [290–292]. 

Moreover, at least some species possess a layer of red filter pigments directly in front of some cells 

of layer one, enabling the vision for a third colour [292]. The presence of the red pigment in 

Habronattus pyrrithrix seems to be crucial during mating [293]. Moreover they have been shown to 

be innately able to use aposematic prey colouration to avoid unpalatable ones [265]. It is reasonable 

to believe that this structure exists in other species of jumping spiders, as many of them possess red 

colouration on the body and may benefit from being able to perceive such colour for the same 

reasons.

There are 3 pairs of secondary eyes: antero-lateral (ALE), posterior-medial (PME) and posterior-

lateral (PLE). In contrast with the AME, these are immobile, but they possess a wide visual field, 

which totally cover almost 360° around the spider, with a 25° of overlap of the two ALE directly in 

front of the animal [288]. The spatial sensitivity of the secondary eyes is also far less than that of 

the principal, other than not granting colour vision. What they lack in spatial sensitivity however, 

they make up in temporal sensitivity, functioning as motion detectors [294], directing the attention 

of the spider’s AME. Land [260] originally described in great detail how jumping spiders analyse 

visual   stimuli.   When   no   stimulus   is   detected,   the   frontal   eyes   move   freely   right   and   left 

spontaneously. Once a stimulus is detected by the secondary eyes, the spider turns its body in order 

to face the object with its frontal eyes. At this point, the eyes perform saccades in order to fixate the 

object at the centre of the visual field. Once locked, the stimulus can be tracked by the eyes without 

being lost again. Perhaps the most important movement is the one named “scanning”, where the 

spider moves its visual field across the object in a repetitive pattern, in a manner almost unique in 

the whole animal kingdom. It has been suggested that scanning is involved in object recognition, as 

the spider observes its target in all its components [260]. The secondary eyes, however, may be 

more than just motion detectors. In Salticidae, the ALE are forward facing – as the AME are – and 

are the second biggest pair. Moreover, the fact that their visual fields overlap suggests that they may 

also have other functions. It seems, for example, that a first, simple categorisation of objects can 

already be operated by the ALE [295,296], eliciting the fixation with the AME only if the stimulus 

is already recognized as a prey. The function of the ALE may have been underestimated until now, 

and it may deserve more attention in the future.
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The visual system

Especially when describing the structure and organization of the spider protocerebrum, it is crucial 

to make a distinction between spider Families. Both the number and connections (and possibly the 

function) of the different neuropils changes greatly. It is especially important to point out this 

difference, since until very recently most of the knowledge about the jumping spiders’ visual system 

was derived from the analysis of the wandering spider  Cupiennus salei  [281,282], which led to 

some incorrect assumptions about how the Salticidae visual system is structured. What remains true 

for all spiders, is that the inputs coming from the principal and secondary eyes are directed to two 

completely separate circuits [56,57,276,281,282].

Figure 3.1 – Schematic representation of the jumping spider syncerebrum and the 8 eyes: AME = 
Antero-Medial Eyes; ALE = Antero-Lateral Eyes; PME = Posterior-Medial Eyes; PLE = 

Posterior-Lateral Eyes. A: Areas part of the principal eyes visual system are highlighted. AM1 = 
first order neuropil, other areas are greyed out; AM2 = second order neuropil; AB = arcuate body. 
B: Areas part of the secondary eyes visual system are highlighted, AM1 and AM2 are removed to 
show areas under them. All other areas are greyed out. AL1 and PL1 = first order neuropils for 

antero-lateral and posterior-lateral eyes respectively; L2 = second order neuropil; MG = 
microglomeruli; MBs = mushroom bodies; MBbr = mushroom bodies bridge.

The principal eyes visual system

From the end of the AME tube, two optic tracts connect the outputs of the retinae to a first order 

neuropil (AM1) [56,57]. The AM1 is composed of two, concentric horseshoe-shaped glomerular 

strips [288] organized in a columnar structure [56]. Presumably, this neuropil operates a primary 

analysis of the visual input. However no functional study to this day has been carried out on these 

areas. AM1 project fibres directly to a second order neuropil (AM2) [57], which is oval shaped and 

larger than AM1 [56]. AM2 projects to the arcuate body [279] (AB, also named central body by 

some authors), an unpaired neuropil situated at the back of the syncerebrum, which is considered to 
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be homologous to the insect central complex [56,279,286,297]. The AB has been described as 

having a retinotopical organization in Cupiennus salei [282], and, as such, has been interpreted as a 

third order visual neuropil [298]. In other families, however, this area has been associated with 

motor coordination, as it is enlarged in orb weaver spiders  [299]. In Salticidae, the AB is composed 

of two separate units: a smaller, dorsal unit (ABd) and a bigger ventral one (ABv). The former is 

layered in multiple subunits, and may be responsible for handling sensory informations [57]. The 

ventral lobe sends multiple connections to the ventral nerve cord [57], a fact that further supports its 

implication in motor control and suggests the AB may be responsible for visual-motor coordination 

(this hypothesis was instead rejected by Strausfeld & Barth [281] in their study of Cupiennus salei). 

Barth   [298]   claimed   the  AB   may   be   an   integration   centre   of   the   spider   brain,   based   on   its 

interconnections with many other regions of the CNS. Recently, a group of researchers were able to 

perform the first electrophysiological studies on jumping spiders, demonstrating that neurons in the 

AB indeed respond differently to different meaningful categories of visual stimuli [300], but also to 

vibration and sound [301]. The presence of a higher integration centre inside a sensory system may 

be a clever solution to the miniaturization problem: vision is so crucial for these animals that it 

cannot be forfeited in favour of cognitive processes, but can indeed coexist and function in the same 

area. This may be facilitated by the presence of two consecutive visual neuropils (AM1 and AM2), 

that probably analyse and select visual information, sending an already simplified and meaningful 

output to the AB.

The secondary eyes visual system

Each one of the secondary eyes is associated with a different first order neuropil (anterior-lateral 

first neuropil, AL1; posterior-medial neuropil, PM1; posterior-lateral neuropil, PL1). AL1 and PL1 

present a highly convoluted surface [57], while PM1 is so small that originally, Hanstrom [279] was 

unable to locate it, leading to the conclusion that these eyes may be vestigial [294]. Hill [57], on the 

other hand, suggests that these eyes might have the same function as the insect ocelli. AL1 and PL1 

are both connected to the same secondary visual neuropil (L2), which probably integrates the 

information coming from both eyes [56]. This structure is profoundly different from what is found 

in other families of spiders, where each first order neuropil of the secondary eyes projects to micro-

glomeruli,   organized   in   three   separate   second   order   visual   neuropils   [281,282].  These   micro-

glomeruli are indeed present in the jumping spider brain, but are not connected to AL1 or PL1. 

Instead they lie on top of the spider mushroom bodies (MBs, see below), to which they may be 

connected, however this has to be demonstrated. L2 and PM1 project connections to the MBs [56]. 
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These are the most prominent neuropils in the spider brain, and they are homologous to the same-

named structure in the insect brain [302]. They serve as a third order neuropil in Cupiennus salei 

[281], but at least in Salticidae they are responsible for much more. They are divided into two or 

three  sections  (depending  on the  inclusion or exclusion of the  micro-glomeruli), and  the two 

symmetrical parts of the two hemispheres are connected with the mushroom bodies bridge (MBbr) 

[56]. The presence of connections to multiple parts of the brain shows that MBs are higher order 

processing   and   integratory   centres   in   the   spider   brain,   possibly   responsible   for   learning   and 

cognitive processes [56,57]. The MB also project connections to the ventral nerve cord, suggesting 

an involvement in motor control.

Overall, the jumping spider brain, and especially the visual system, provide an interesting model for 

the study of cognition. Despite the profound differences between arachnids  and insects, some 

homologous structures are maintained. In particular, the MBs, which are the areas associated with 

cognition and memory in insects, are present and highly developed in spiders, are linked to the 

visual system. Moreover, the linkage between visual system, motor control, and integration, as well 

as the presence of different orders of neuropils, suggests that these miniaturized brains have been 

modified by evolution to optimize information processing and to reduce the load on integrative 

centres thanks to early selection of meaningful stimuli. This might also be the case for the scanning 

process, which gives the spider the possibility to engage with his high principal eyes’ visual system 

only with stimuli that have already been selected by the secondary system. The structure of the 

Salticidae brain describes a Family capable of complex cognition, with a primary focus on vision. 

For this reason, we carried out a study on visual cognition with the jumping spider  Phidippus 

regius,  to  describe  how  visual  information  is   registered  and  if  it  follows   the  same  principles 

ultimately described in humans.
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Study 1: Visual discrimination learning and amodal completion in a 
jumping spider

Data from this study have been published as [303]1.

Introduction

We know from previous literature that jumping spiders can distinguish and categorize visual stimuli 

[300], but the underlying process is still unknown. Land [260] stated that “An important task that 

the retinae are performing during scanning is therefore going to be the detection of lines or contours 

with particular orientations and in appropriate positions”. This suggests that the local features of 

stimuli are crucial for object recognition, in particular, in the task of categorizing prey. Dolev and 

Nelson [304] tested Evarcha culicivora (Family: Salticidae) to assess which elements of a figure are 

necessary for the spider to trigger a stalking reaction. The authors identified some local features 

crucial for responding to a mosquito (preferred prey of Evarcha). In a more recent study, Dolev and 

Nelson [305] further analysed the attention of Evarcha to those local features, testing the preference 

of the animals  between simple stimuli containing features of preferred prey (mosquito) and a 

realistic representation of other, non-preferred prey (flies). Evarcha showed a clear preference for 

the first class of stimuli and chose the simple features independent of their global configuration (but 

also showing selective attention to the relative orientation of the elements present in each stimulus). 

On   the   contrary, Hypoblemum   albovittatum,   a   generalist   predator,   preferred   the   realistic 

representations to the simpler stimuli in all instances. Dolev and Nelson [305] suggested that the 

privileged use of local features could represent an adaptation for a specialist predator to locate more 

effectively its preferred prey. This would not be the case for a generalist predator, which could 

instead benefit from using the general configuration of the image to identify its prey. However, in 

the study by Dolev and Nelson [305], realistic (and perceptually richer) pictures were contrasted 

with much simpler shapes (made of lines and circles). Stimuli were not paired so as to test for the 

use of the actual configuration (as would be obtained when globally different but locally identical 

stimuli   are   contrasted),   except   for   one   comparison   (conditions  A  and   F   of   their   study).   No 

conclusions could be drawn as both species performed at random (i.e., they did not preferentially 

stalk any of the two stimuli presented). 

1 From the original publication, the data has been re-analized and a new improved criterion of 
inclusion has been chosen.
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The studies mentioned above [260,304,305] focused on the cues that the spiders used to distinguish 

prey from non-prey, and they demonstrated that local features can be crucial for triggering the 

spider's stalking response. But what about the general mechanisms underlying the perception of 

stimuli which are not necessarily prey? Would the local features still be crucial, or would the spider 

in this case disregard the local features and instead respond to the whole configuration (i.e., to a 

particular arrangement of the local features)? Many animal species were shown to preferentially 

respond to  the  global  configuration  in object  recognition,  and  often  times  this  was  tested  by 

exploiting a mechanism called “amodal completion”. Through amodal completion, an animal can 

perceive a figure as a whole even if another object conceals a portion of it [306]. Mammals 

[307,308], birds [309], fish [310] and even invertebrates [311,312] use this mechanism just as 

humans do [313]. 

We investigated jumping spiders’ ability to discriminate between two abstract, geometrical shapes 

through associative learning, using the model species  Phidippus regius (Koch, 1846). A previous 

study [314] tested the ability of jumping spiders to discriminate between the moving image of a 

cricket (meaningful) and a moving rectangle (abstract), but the animals seemed unable to learn to 

discriminate between the two. However, the focus of the study was the detection of the motion of 

stimuli, rather than their shape. In our study, once the spiders had undergone the training phase, we 

assessed their free choice in unrewarded test trials to assess discrimination learning. If Phidippus 

regius was able to learn to associate a neutral visual stimulus (an abstract shape) with a reward, its 

performance was expected to be higher than chance level (i.e., the spider was expected to approach 

the previously positively rewarded shape and disregard the previously negatively rewarded shape). 

Successively, we tested spiders' ability to generalize the learned response to a partly concealed 

version of the stimulus reinforced during training. If this species could perform amodal completion 

similarly to humans (and also to many other species) when confronted with an occluded version of 

the previously positively rewarded shape, the spiders were expected to choose to approach such a 

stimulus and not its “broken”, non-occluded version. Both stimuli in this comparison would present 

identical local features, but only the occluded stimulus would trigger shape completion to the 

human eye. If, on the other hand, the spider’s vision relied on local features, we expected a random 

choice between the two stimuli presented in this comparison.
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Methods

Subjects

Eighteen adult female spiders (instars 8 – 9) were used for the experiment. Five of them came from 

one egg-sac and 13 from another one. The egg-sacs were laid by two different spiders. The subjects 

were housed individually in test tubes upon emerging from the mothers’ nest. Then, after the first 

moult, the spiders were individually placed in plastic boxes (each with dimensions of 7 x 16 x 6 

cm), with each featuring a portion of a cardboard egg container to provide shelter and a walking 

surface, as well as a wet sponge to provide humidity and drinking water. The dimensions and 

contents of boxes were chosen according to the findings of Carducci and Jakob [315] given the fact 

that jumping spiders show better performance when raised in larger, enriched environments. The 

box walls were transparent and with holes on the sides to allow airflow. Light was shed on the 

boxes via neon lamps with natural light (5000 kelvin colour temperature, 36 watts, 3350 lumens). 

The light cycle was set at 12 hr light and 12 hr dark. We fed the spiders one to three Drosophila 

melanogaster every three days between the second and third instars. After this, the spiders were fed 

Tenebrio molitor larvae (one each week) that were similar in size to the spiders. The larvae were 

bred   in  the   laboratory   and   fed   a  specific   diet   to   ensure   their   best   development.   Prior   to   the 

experiment, the spiders had no interactions amongst one another (apart from the days spent inside 

their nests). Moreover, they had no previous experience with the types of stimuli presented during 

the experiment, either unconditioned or conditioned (e.g., drop and shape as described below).

Apparatus

The experimental apparatus consisted of a box of the same size as the housing ones. The walls of 

the box were covered with white paper to insulate the animal from external cues (Figure 3.2A). The 

lid of the box remained transparent to allow lighting and to allow for recording. The spiders were 

presented with two red-coloured drops. One of the drops contained sugar (20% weight by volume 

solution), and the other contained citric acid (25% weight by volume solution). The drops appeared 

visually identical to the human eye. However, because sugar absorbs ultraviolet light, the two drops 

could have appeared different to the spiders [291]. I chose to use these unconditioned stimuli based 

on the experiment by Liedtke and Schneider [263], in which they appeared to be good rewards for 

training jumping spiders. Moreover, jumping spiders have been observed multiple times consuming 

nectar in nature [316], and as such we argue that nectar is a natural food for these animals. Each 

drop (approximately 40 μl) was placed on a white plastic square (Figure 3.2B). A vertical piece of 
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plastic was placed on one of the four sides to hide the drop from the spider's visual perspective. On 

both sides of the vertical wall, a black shape was glued, either an ‘X’ or an ‘O’. Both shapes were 

matched for total area (7 mm2), made via a cutting plotter (Signpal PUMA II) on adhesive plastic 

(approximately 0.1 mm thick). 

Experimental design and procedure

Prior to the testing period, the spiders underwent seven days of fasting to ensure a high level of 

motivation. The day before the testing period, the subjects were placed in an empty testing chamber, 

in which they remained until the end of the experiment. Each spider underwent a training and a 

testing phase.

Training Phase

The training phase lasted for seven days. Each day, three trials were performed for each spider, 

except for the fourth day, during which no test was performed, to allow the spider to regain 

motivation for the reward. In total, each spider underwent 18 training trials. For each trial, the 

subject was positioned in the centre of the box and covered with a small opaque screen. Then, the 

two platforms with the two drops, one with citric acid and one with sugar, were placed at the two 

ends of the box. Finally, the spider was released. Each trial lasted for approximately 45 min, during 

which the animal was free to move, look at and taste both drops before the trial ended. The timing 

of the trials was chosen because in pilot trials, the spiders showed a long latency prior to choosing a 

stimulus. Between trials, a period of approximately 60 min elapsed to avoid placing excessive stress 

on the animals. The training shape was randomly assigned to each spider so that half of the subjects 

were trained on one and the other half on the other. To prevent the spider from using external cues 

(i.e., the position of the light) to locate the drop of sugar water the box was rotated after each trial. 

Moreover, the position (left or right) of the correct stimulus was changed randomly from trial to 

trial. Between each trial, the plastic squares were thoroughly cleaned with alcohol to remove any 

possible trace of sugar or citric acid. Moreover, the stimuli were placed in the box using new latex 

gloves every time to exclude any possible chemical cues (other than the drop itself).
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Figure 3.2 – A: Experimental apparatus with the two platforms (“X” and, “O”). The spider's 
starting position was located in between and exactly at the same distance from either of the two 

platforms. B: “X” platform, front and back views. The drop is placed in the centre of the base. The 
base is 20mmx20mm, 0.8mm thick. The vertical wall is 10mmx20mm, 0.8mm thick. C: Stimuli 

presented to the spiders in the “unrewarded-illusion” condition. Spiders trained on the “X” shape 
were exposed to the 2 stimuli at the top, spiders trained on the “O” shape were exposed to the ones 

at the bottom. The geometrical features of the two stimuli presented to each spiders are identical 
(local features), but they differ in their global configuration if the observer can perform amodal 
completion. An animal capable of completing occluded objects should in fact perceive as whole 

only the “occluded” stimulus hence recognising this as more similar to the shape associated with 
the reward during training.
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Testing Phase

After the training phase, a two-day pause took place, during which a damp sponge and small 

Tenebrio molitor larvae were placed in the box. This was necessary because the sugar water, even 

though it represented a suitable reward for the animals, was not sufficiently nutrient rich. The 

testing phase lasted between one and three weeks. The number of sets that a spider underwent 

depended on its age and level of stress. Younger spiders were considered able to handle a higher 

amount of stress. Moreover, some spiders died of old age after the first or second week, so they 

underwent fewer tests. Lastly, if a spider started to lose strength and decrease its activity level due 

to the lack of nutrient-rich food, the test was stopped, then started again after a week’s pause with a 

retraining. Each spider underwent three trials  per day. Every three days, a 24-hr interval was 

observed. As in the training phase, each spider performed a total of 18 trials.

Two-thirds of the trials were completely identical to the training phase: we still presented the 

spiders with the two different drops with sugar and citric acid (rewarded trials). Those trials were 

useful for maintaining the learned association between shape and reward. A third of the trials were 

unrewarded testing trials, during which only rose-coloured water (with neither sugar nor citric acid) 

was presented. Removing the reward and the punishment was necessary to control for any cues, 

such as odour, colour and taste. Two different types of testing trials were conducted. In the first 

type, the shapes presented were the same as those used in training (‘unrewarded-shape trials’). They 

were used to assess the outcome of the training phase: If a spider learned the association between 

the shape and the reward, it was expected to choose the drop behind the stimulus that had been 

associated with the sugar water. In the second type of testing trial (‘unrewarded-illusion’), the 

spiders were presented with novel stimuli: An occluded shape (either the ‘X’ or the ‘O’) and a cut 

version of the same shape (Figure 3.2C). For each spider, the shape used was the one that had been 

associated with the sugar water during its training phase. The occluder in the occluded stimulus was 

red in colour and of a different luminance to the shape to be clearly distinguishable from the actual 

shape. The local features (i.e., the visible parts of the shape) were identical in the two stimuli, apart 

from the position of the occluder, so that to distinguish the two stimuli, the animals had to use a 

global type of visual processing. If a spider relied on amodal completion, it was expected to choose 

the occluded version of the shape, which would be perceived as the whole shape behind a red bar, 

whereas the cut stimulus was expected to be seen as a non-complete shape. If the spiders relied on 

local visual processing, and thus focused on the separate features to identify the shape, they were 

expected to choose randomly in this condition given the fact that the two stimuli presented identical 
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features. For the 18 testing trials, we used a random procedure to determine which trial was 

rewarded, unrewarded-shape or unrewarded-illusion, maintaining the ratio of two-thirds rewarded 

trials and one-third unrewarded trials (half with training shapes, and half with illusory vs. cut 

stimuli). In addition, in the testing phase, the boxes were rotated, and the respective positions of the 

correct and incorrect drops were randomly determined.

We used four cameras to record the behaviour of the spiders. Each camera could record four boxes 

at the same time. For this reason, a maximum of 16 spiders were tested at the same time. From the 

videos, it was impossible to tell which spider was trained on the ‘X’ and which on the ‘O’ because a 

letter  code   was  used  to   identify   each   animal.  For  this  reason,  the   observer  was   blind  to   the 

experimental conditions. We used the software BORIS [317] to code the different behaviours of the 

spiders during the 45 min of exposure. We measured the total time, start and end of each event for 

the following behaviours:

• Stasis – The spider does not move at all.

• Behind – The spider is positioned behind the wall with the shape, in contact with the plastic 

platform, with at least one limb.

• Drinking – The spider drinks either drop. It is not sufficient to see the spider on top of the 

drop to code this behaviour given the fact that often spiders walk on top of the drop without 

actually tasting it. When the animal actually drinks, it stops with the chelicera on top of the 

drop for several seconds and opens its palps wide.

• See – We also registered the latency to first detection of each drop. Note that the screen in 

which the shapes are glued covers the drop, so the spider has to actually move toward the 

drop to see it. The “drinking” behaviour was used as the choice indicator. It was, in fact, a 

sign of a clear preference of the spider, in addition to being an indicator of motivation (the 

spider drank only when actually hungry).

Results

A  total   of   864   trials   (576   rewarded,   144   unrewarded-shape,   144   unrewarded-illusion)   were 

performed in the testing phase. A total of 802 trials (538 rewarded, 131 unrewarded-shape, 133 

unrewarded-illusion)   were  successfully   recorded   and  analysed.   Unfortunately,   due   to   technical 

problems, 62 trials were not recorded (most of them from the same day of testing). 
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Of the trials we analysed, the spiders drank either drop in 171 trials (106 rewarded, 38 unrewarded-

shape, 27 unrewarded-illusion), whereas only in three trials did the subjects drink from both drops. 

The performance in these three trials was discarded from the final analysis because it indicated lack 

of choice, just like in the trials in which the spiders did not drink from any drop. The analysis was 

performed   on   168   observations   (106   rewarded,   35   unrewarded-shape,   27   unrewarded-illusion) 

(Table 1). 

R US UI Total

Trials performed 576 144 144 864

Trials recorded 538 131 133 802

Trials recorded (% on performed) 93.40% 90.97% 92.36% 92.82%

Trials answered 106 38 27 171

Trials answered (% on recorded) 19.70% 29.01% 20.30% 21.32%

Trials analysed 106 35 27 168

Note.  The   difference   between   percentages   of   answered   trials   among   groups   (19.70%,   29.01%,   20.30%)   is   not 
statistically significant (proportional 3 sample test – χ²(2) = 5.5364, p = 0.063). 

Table 1 – Number of trials performed, successfully recorded, answered and analysed, and relative  
percentages,   divided   for   conditions   (R=Rewarded,   US=Unrewarded-shape,   UI=Unrewarded-
illusion).

Due to the non-independence of the repeated-measures procedure, the individual heterogeneity and 

the variable individual number of observations, a mixed generalized linear model (GLMM) with 

binomial distribution was employed, considering the individual subjects as a random effect for all 

three conditions.  Subsequently, we did a post-hoc analysis with Bonferroni correction to determine 

what values were significantly different from chance level. All of the analyses were performed 

using the software R (v.3.2.3) [183] with the packages lme4 [185], car [186], emmeans [187], 

DHARMa [189], MASS [318], ggsignif [319] and ggplot2 [242]. Only the main results are reported 

here. For the complete analysis refer to Appendix 5.

We used “drinking” behaviour as the dependent variable. We found a difference between the 

conditions in the probability of drinking the correct drop (GLMM analysis of deviance, chi-square = 

27.427, p-value < 0.0001). A post-hoc analysis revealed that the performance was above chance 

level for the rewarded condition (GLMM post-hoc, estimate = -0.962, SE = 0.187, z-ratio = -6.354, 

p-value < 0.0001), but not for the unrewarded-shape (GLMM post-hoc, estimate = 0.689, SE = 
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0.078,   z-ratio   =   2.143,   p-value   =   0.0964)   nor   for   the   unrewarded-illusion   (GLMM   post-hoc, 

estimate = 0.481, SE = 0.096, z-ratio = -0.192, p-value = 1) conditions (figure 3.3). 

Figure 3.3 – Correct performance (coloured dots) of the spiders on the rewarded, unrewarded-
shape and unrewarded-illusion trials, with standard errors. The two models (considering all trials 
or only the first trial for each spider) are represented in different colours. 0.5 is the expected level 

of chance.

To exclude the possibility that the learned tasks were extinguished after the animals were faced with 

unrewarded trials, we considered only the very first trial for each condition. The probability of 

choosing the correct stimulus in the rewarded condition remained significantly above chance level 

(GLMM   post-hoc,   estimate   =   0.941,   SE   =   0.0571,   z-ratio   =   2.69,   p-value   =   0.021).   The 

performance recorded in the unrewarded-shape condition raised to 0.75, but was still unable to 

reach significance (GLMM post-hoc, estimate = 0.75, SE = 0.108, z-ratio = 1.903, p-value = 0.171). 

In the unrewarded-illusion condition the performance remained at chance level, with a slight, non 

significant preference for the ‘wrong’ shape (the broken X or O) (GLMM post-hoc, estimate = 

0.308, SE = 0.128, z-ratio = -1.349, p-value = 0.5316)
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Discussion

In the unrewarded-shape condition, we presented the spiders with the two training shapes but in the 

absence of any reward (sugar water or citric acid water). Even though the performance appeared 

high, even more so when considering only the first trial (0.75 probability of choosing correctly), it 

was not enough to reach significance. This was probably due to the low amount of subjects that this 

method permitted to reach. As discussed above, out of the many hours of tests performed and 

recorded, only a handful of data could be registered. The percentage of correct choices is still 

promising, and we believe this is because the procedure presented some advantages. The modality 

of the presentation of the stimuli granted the spiders the possibility to freely inspect them instead of 

forcing a choice at every trial. In fact, in both the training and the testing phase, the animals 

wandered in the experimental apparatus looking at both shapes and both drops multiple times prior 

to making their choices. They inspected the images from different distances and even touched the 

screens. This observation aligns with the idea of a ‘visual inspection’, as Cross and Jackson [320] 

proposed and as described in some Spartanae species prior to engaging in detour behaviours [257–

259]. We think that this active and prolonged scanning behaviour is fundamental for the process of 

learning novel visual stimuli, as well as in novel detours. In the study by Bednarski et al. [314], 

described in the introduction, the spiders had no possibility of engaging in this visual inspection 

because the stimuli were moving. This procedure seems to be a promising method for training 

spiders, a task that is known to be far from simple [321]. 

In the illusory condition, the spiders were presented with an occluded version of the previously 

rewarded stimulus and a broken version of the same stimulus. The two stimuli were identical in 

their local features but differed in their global configurations (which, to the human eye, could be 

perceived only in the occluded stimulus). Because we have no clear indication that the spider 

learned to discriminate the training stimulus, no real conclusion can be drawn from the illusory 

condition. If we were to discuss the 0.75 performance observed in the unrewarded-shape condition 

as an indication of learning, the spiders’ performance at the chance level may indicate that the 

spiders were not using a global visual strategy, or the amodal completion mechanism, to identify the 

correct stimulus. Although preferential processing of local features has been described in various 

animal species [322], the mechanisms underlying such strategies are not fully understood. Spiders 

could provide a further and valuable model for their investigation. The use of a local strategy (i.e., 

basing the choice on the local features, which were identical in the two stimuli presented) is, 

however, not the only possible explanation. One alternative possibility is that the spiders had 
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previously learned avoidance of the punished shape rather than association with and approach of the 

positively rewarded one. When the spiders were presented with two versions of the positively 

rewarded shape in the illusory condition, neither stimulus could trigger avoidance (or the choice of 

the other stimulus), in spite of the use of a global visual strategy. However, further experiments are 

needed to test both hypotheses.

Unfortunately, we cannot draw any information from the learning trials in which sugar water and 

citric acid water were present (training phase and rewarded condition of the testing phase). Almost 

no spiders drank the citric acid drop because, we assume, they were able to easily recognize the 

taste as unpleasant beforehand with a simple touch. We considered using a different indicator of 

choice, such as the first drop approached, although we realized that approach behaviour does not 

constitute reliable information (see the “Results” section). Detecting and scoring from the video 

recordings any simple touch of the drops was impossible. For this reason, we lacked a measure of 

the training progression. A feasible solution would be to implement an automated system both for 

scoring and stimulus presentation. Such a method should optimize the objectivity and reliability of 

the behavioural measures  [323]. In fact, scoring is time consuming and relies heavily on the 

expertise of the scorers. In a few trials (10 out of the 802 recorded trials), we had to analyse the 

recordings multiple times and compare the opinions of all scorers because the animal’s position or 

orientation made it hard to judge whether it was drinking or not.

In conclusion, although promising, this  methodology is not efficient to train jumping spiders. 

Despite (or even because of) the freedom given to the spider to choose only in some trials, greatly 

reducing the number of choices made with low motivation, the experiment was too time consuming 

and granted too few data points. For this reason, I designed an automated training paradigm, which 

would greatly decrease the time cost and human error.
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Study 2: Design and validation of an open source “Skinner-box” system 
for the study of land arthropods

This study is in preparation [324].

Introduction

As discussed in the study above, the inadequacy of the procedure was, in my opinion, the main 

reason we were unable to find any significant effect. The manual scoring and carrying out of the 

experiment posed some clear limitations in the training methodology. Most of the time, experiments 

carried out in the lab rely on human intervention, introducing possible confounding factors arising 

from  the   experimenters’ manipulation   [325]  or  even  their  mere   presence   [326]. Also,  scoring 

procedures are generally carried out manually: this may not be a problem for simple binomial 

measures (behavioural response A vs behavioural response B), but becomes increasingly complex 

when   the   scored   behaviour   is   not   immediately   evident   (i.e.   [303]),   relying   mostly   on   the 

unconsciously biased experimenter. To solve this problem, double-blind procedures [327] can be 

implemented. However, these can be complex, and extremely costly in terms of time and resources 

to reach affordable results. 

A possible solution to this problem is the automation of both experimental procedures and data 

collection [323]. The invention of the first operant conditioning chamber [204], the Skinner-box 

system, was an enormous scientific breakthrough in the study of learning and conditioning. Today, 

Skinner-box like systems are used throughout most animal research, especially for classical model 

species such as rodents, birds and monkeys. More recently many automated systems have been 

developed for the study of Hymenoptera, for tasks ranging from training [328,329] to automated 

tracking [330,331].  These methodologies did not only permit higher objectivity but also greatly 

expanded the range of possibilities regarding what can be discovered through behavioural research 

(i.e. 24/24hr recording of individual ant behaviour and interactions between colony members [332], 

impossible to achieve with manual techniques). Machines can collect a massive amount of data, not 

comparable with what is achievable through manual procedures. Moreover, precision is improved, 

granting the exact reward contingencies and timing during training.

Training   jumping   spider,   however,   remains   one   of   the   biggest   challenges   to   overcome   when 

studying this Family [321]. The reason so many methodologies fail to find significant results is the 

animals’ lack of motivation. Spiders can survive for multiple weeks after having consumed a single 
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prey (personal observation, but see also [333]: in nature, Cyrba algerina had a prey in its chelicera 

in only 2.7% of all the sightings); moreover, they have a very brief period of activity during the day 

[257]. The low energetic needs of jumping spiders prevent long-lasting procedures, forcing research 

to   focus on   simple   S+/S-   associations,   that   require   shorter,   simpler   training   procedures. 

Alternatively,   longer   training   can   be   carried   out,   but   with   immense   expenditure   of   time   and 

resources upfront of an underwhelmingly low amount of data [303]. An automated training system 

would solve most of these problems, working continuously to catch the period of activity of the 

animals, being able to sustain prolonged training to cope with the low motivation of the animals. 

However, to my knowledge no automated training procedure has ever been designed to test jumping 

spiders. To date, most experiments focusing on jumping spiders cognitive abilities have been carried 

out with spontaneous choice procedures, since our lack of reliable training methodologies prevented 

testing them outside of the natural domain. 

In this section, I present the SPiDbox: a Skinner-box system based on the Raspberry Pi. This system 

was   intended   to   solve   all   of   the   above-mentioned   problems,   increasing   reward   contingencies 

precision and decreasing training times, while also requiring fewer human resources.

Design, software and electronics 

The SPiDbox was designed with four main requirements: it had to be easy to produce, easy to use, 

low   cost,   and   open   source.  All  the   components   are   cheap   and   readily   available,   or   even   3D 

printable. The total cost of the system is around €100-150 ($115-170). Moreover, once built, the 

machine can be operated by anybody, and the software can be easily modified to fit different reward 

routines. Source code, circuit design and 3d models will be available in a continuously update 

repository on git-hub at the time of the submission in peer reviewed journal.

General structure

The SPiDbox (figure 3.4) is divided into three sections. The bodies of the sections were all designed 

in openSCAD (version 2018.01.06) [334] and 3D printed in PLA plastic with a Creality CR-10. 

Starting from the bottom, the first section is constituted by a rectangular box (11×11×15cm), with a 

window on the front to fit an OLED screen (part of the user interface, see below). Inside the plastic 

box, all the circuits and electronic components are placed. This section also provides the needed 

space below the experimental box to fit cables and tubing that reach the components above.
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Figure 3.4 –  (A) Full view of the SPiDbox system. (B) Top view of the experimental chamber. The 

two photo-sensors were respectively blue and yellow in colour.

The experimental chamber lies on top of the base box (figure 3.4). It is constituted by a white box 

(7x8x4cm). On the front wall, a hole (3 cm in diameter) permits the insertion of the subject. The 

box floor presents three holes, positioned near the back wall. The centre hole is used to fit the 

reward dispenser, and the other two are used to fit the photo-sensors (see below). The back wall of 

the box is constituted of an e-paper screen (2.9-inch e-paper module, Waveshare) that can be used to 

project stimuli for the study of the animal’s visual abilities. I chose to use an e-paper instead of any 

other alternative because it does not produce any backlighting, not disrupting the functioning of the 

photo-sensors and avoiding any interference with the animal’s visual system (many arthropods 

show a phototactic response, moving towards light and possibly ignoring the task). The ceiling of 

the box is open to enable recording of the spider and sealed with a transparent plastic lid. On top, a 

71



SECTION 3 – COGNITION IN JUMPING SPIDERS

second plastic frame was placed to lock the lid in place. This top frame presented all-around a 12V 

LED string to provide constant lighting in the box.

Lastly, on top of the experimental apparatus, a 13cm-tall frame was placed, with a pi-camera 

attached at the top to record the experiment. The Raspberry Pi Zero was secured to the back of this 

frame.

In total, the three components occupy an area of 11×11x35cm. The two pumps needed to provide 

and remove the reward were placed outside of the box, on both sides.

Reward dispenser

To provide a liquid reward (in this case a sucrose solution; see the experimental validation), the 

SPiDbox employs a peristaltic pump based on a Nema 17 motor stepper motor, with 200 steps per 

rotation.   The   motor   is   controlled   by   a   Polulu  A4998   driver   breakout   board   (Sparkfun).   The 

peristaltic pump contains silicone tubing with an internal diameter of 2 mm. The peristaltic pump 

head has a total diameter of 3.4 cm and contains 6 rotors, each with a diameter of 0.7 cm. With 

these specifications, one full rotation of the motor dispenses 0.2 ml of liquid. Theoretically, the 

pump can deliver a liquid amount as low as 1μl (0.2 ml/200 steps). One end of the peristaltic pump 

tubing is placed inside a sucrose solution reservoir, and the other is attached through a coupler to a 

drop dispenser: a small plastic piece with two couplers at the bottom and a conical hole at the top. 

This drop dispenser is attached to the experimental box, flush with the floor. This way, when the 

peristaltic pump is activated, a drop of sucrose solution appears on the floor of the experimental 

box.  

After a set amount of time, the reward is removed by a DC motor-based peristaltic pump. One end 

of the tubing of this second peristaltic pump is attached to the drop dispenser, and the other is 

inserted into an empty cup, acting as a discard reservoir.

To provide the same amount of sucrose solution every time, I designed a motion routine for the 

stepper motor peristaltic pump. At the start of every experimental session, the pump is primed: The 

motor moves continuously to collect the liquid inside the tubing and send it up to the experimental 

box. The motor stops as soon as the drop is seen coming out of the drop dispenser. After that, the 

motor is rotated until it reaches a predetermined position. This is needed to know at every step 

where each rotor is located. In a peristaltic pump, not every step of the rotation pushes the same 

amount of liquid: at certain angles, the rotors engage the tubing at the entrance of the pump, and 

successively, at a second angle, rotors disengage from it at the exit. While the tube is engaged, the 
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liquid gets pushed onwards, and when any rotor disengages the tube, the amount of liquid that it 

displaced is sucked back into the tubing (figure 3.5). Setting a point 0 for the motor, in which the 

position of all the rotors is known, enables us to predict which steps will be ‘push’ steps and which 

will be ‘retract’ steps. After the motor reaches its starting position, the excess solution still in the 

drop dispenser is removed and the experiment can be started. Given the ‘push-retract’ pattern of the 

pump and the volume of the food dispenser, 1/6 of rotation is needed to fill it, or 33 steps. After 

dispensing the reward twice, the third movement consists of 34 steps, to arrive at half rotation with 

exactly 100 steps. The same routine is repeated for the second half of the rotation.

Figure 3.5 – A: Top view of the stepper peristaltic pump. The centre circle is the rotor shaft, with 
attached 6 different rotors. Transparent tubing depicted with dotted lines. The tube is placed 

between the rotor shaft and an outside wall. In four different points (indicated with numbers 1-4) 
the tubing is squeezed by the rotors against the external wall. The liquid gets trapped between each 

squeeze point and is transported from the left to the right tube end, while the rotor shaft rotates  
clockwise. B: The rotor shaft have been rotated clockwise 30°. The rotor number 4 has now 

disengaged the tubing and relaxed the contraction. This in turn increased the space available for 
the liquid, sucking back a small amount. The rotor will need to be rotated more to compensate for 
this retraction. Since the shaft has 6 rotors, a complete cycle of “push-retract-push” is achieved 

with a rotation of 60° (or 33.3 steps), with which each rotor end in the position that the next rotor 
occupied before.

The machine can never provide multiple drops at the same time. Before being able to dispense a 

second, the first has to be removed by the DC motor peristaltic pump. This way, the drop dispenser 

can   either   be   full   or   empty,   never   changing   the   amount   of   sucrose   solution   that   it   contains.

During experiments, the drop was dispensed only when the spider touched a particular object, 
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acting as the unconditioned stimulus. This object was based on a photo-resistor to detect the 

spider’s presence.

Data registration

In the two lateral holes of the experimental box, I fitted two different plastic pieces with a photo-

resistor attached in the middle. The two objects can be the same or of different colours, at floor 

level or raised, etc. The photo-resistors were subsequently attached to a voltage divider, feeding its 

output to a comparator circuit. The other end of the comparator was attached to the output of a 

trimmer. The photo-resistor had a variable resistance depending on the light hitting it; when the 

spider passed on top of the photo-resistor, it decreased the amount of light reaching the surface and 

increased its resistance. Regulating the trimmer, a resistance threshold could be set, at which the 

comparator   switched   from   a   0   (photo-resistor   not   covered)   to   a   1   (photo-resistor   covered).   I 

regulated each threshold for the comparator to change state when at least 50% of the photo-resistor 

surface was covered. Each activation of the photo-resistor was registered in a CSV file, along with 

the time of the day and duration.

The activation of one photo-resistor works as an input for the machine, which in turn dispenses a 

drop of sucrose solution. Having only one photo-resistor, however, would not have been enough for 

me to measure learning rate: the change in the amount of activation of just one button can not be the 

only sign of learning by the animal, as an increase in general activity would give the same results. 

To solve this problem, I used two photo-resistors: one able to release the reward and one that did 

absolutely   nothing.   This   way,   I   could   compare   the   activation   of   both   “buttons”,   enabling 

discrimination of a general increase or decrease in activity from the effect of a learned association.

User interface

For the machine to be used even by people not accustomed to the Python script, I decided to design 

a user interface from which the experimenter can select training routines, define subjects, and 

prepare experiments. I added to the box a rotary encoder, used to navigate to a menu projected onto 

an OLED SSD1306 (driven with the library luma.oled [335]). At start-up, the user is prompted with 

two options to choose from: launch and settings.

Selecting “launch” prompts the opening of a sub-menu, containing all defined training routines to 

choose from. New training routines can be programmed in Python and then added to this list to be 

used. After selecting any training routine, the user is prompted to input the subject ID and the trial 
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number. During the course of any experiment, the screen shows the subject ID and trial number, as 

well as elapsed time and the amount of each photo-resistor's activation.

In the “settings” sub-menu, I defined some routines to test, prepare, and clean each element of the 

machine. The user can prime the peristaltic pump, as described above, and clean it after the machine 

has been used, letting clear water run through the tubing. Moreover, from this section, new subject 

IDs can be defined. Lastly, the photo-resistor can be tested, prompting the sensor state on the OLED 

screen.

Experiment presentation

With all the components interacting as described, I designed a full training procedure. At first, the 

animal was inserted into the experimental box through the entrance hole. Inside, it could interact 

with two buttons, a rewarding one and an inert one. In this experiment, I used sensors of different 

colours  (see  experimental   validation).  Perhaps  more   interestingly,   the  button  could   have  been 

programmed to be rewarding or not depending on what stimuli were presented on the e-paper 

screen, such as different shapes. The subject would stay in the box for a fixed amount of time, free 

to press any sensor any number of times. The procedure was then repeated on subsequent days as 

needed.  The  different  number  of activations  between sensors  across  trials  was  used  to assess 

learning.

Experimental validation: Colour discrimination in the jumping spider Phidippus 
regius

To test the efficacy of the SPiDbox I designed a simple colour discrimination task. Note that the 

following experiment is not intended to be a demonstration of the presence of any ability in the 

jumping spider. In fact, it has already been demonstrated that jumping spiders can see a wide colour 

spectrum [265,292,336,337], and can be trained to discriminate between blue and yellow [263], the 

two   colours   employed   in   this   validation.   The   following   experiment   is   solely   intended   as   a 

demonstration that this methodology is effective in training jumping spider. I chose a yellow/blue 

colour discrimination task because it has already been demonstrated in jumping spiders. This way, a 

negative result would be fully imputable to a fault in the methodology, and not to the inability of the 

animals to perform the task.
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Subjects

I employed 30 Phidippus regius in the experiment. Due to subject availability, at the time of testing 

2 of those were adult females, 8 were adult males and the remaining 20 were juveniles. All the 

spiders were born in the laboratory, from the same breeding couple. Upon emergence from an egg-

sac, the animals were kept together in the same box (39×28x27cm) and fed ad libitum Drosophila 

melanogaster  once every two days. Upon reaching the 4 th  instar, the spiders were separated and 

housed in individual transparent boxes (17x9x6cm), which contained a cardboard egg holder cut-

out, to provide shelter and enrichment, as well as a florist sponge, functioning as a water and 

humidity source. Box size was chosen according to Carducci and Jackob [338]. All the individuals 

were kept at a temperature between 27 and 29 degrees Celsius, and with a light:dark cycle of 12:12 

hours. Spiders were starved a week prior to starting the first trial and were never fed outside the 

SPiDbox until the end of the full procedure. None of the spiders that underwent the experiment had 

been fed with sucrose solution before the test.

Procedure

The experiment lasted a total of three weeks for each individual and it was divided into three 

sections.

The first section was a habituation phase. Each spider was inserted into the experimental chamber 

through the entrance hole. Here, no photo-sensor was present: instead, the drop dispenser was 

programmed to activate at random time intervals, between 30 and 90 seconds. The peristaltic pump 

was loaded with a blue-coloured, 0.6M sucrose solution. It has been demonstrated that many 

jumping spider species feed on flower nectar in nature [316], and this reward has been reported in 

literature as an appropriate reward for training [263]. After being dispensed, the drop remained for 

60 seconds before being removed by the second pump. The spider was free to explore the apparatus 

and drink from the drop for a total of two hours. After this period of time, the subject was removed 

from the apparatus, and the latter was cleaned to start a trial for a second spider. I repeated the 

habituation trial five times, once each day. This section had two main goals: first, I wanted to 

habituate   the   spider   to   a   new   type   of   food   (the   sucrose   solution   drop)   and   to   the   reinforce 

contingencies (the box is rewarding and the drop comes from that specific spot); second, I wanted 

to start an association between the colour blue and a reward.

The   second   section   consisted   of   the   actual   training.   I   added   the   two   photo-sensors   to   the 

experimental box. One of those was fitted into a blue casing, and the other one into a yellow casing. 
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The two photo-sensors were then placed on each side of the drop dispenser and remained in the 

same position through all the phases (however, the sides were balanced between spiders). At this 

point, the drop was dispensed only when the spider covered more than 50% of the blue-cased 

photo-sensor surface. I chose the blue photo-sensor as  the correct one to exploit the positive 

association formed with the colour blue in the habituation phase. After being dispensed, the drop 

(still blue-coloured 0.6-M sucrose solution) remained available for 60 seconds, then was removed. 

Covering the yellow photo-sensor had generally no effect on the experiment, as I added it only as a 

control to check if the number of activations of the correct one changed (see the previous section). 

However, if the yellow sensor was activated during the 60 seconds of drop presence, the latter was 

immediately removed. This was done to avoid inadvertently training the spider in an unwanted 

sequence of activation combining both sensors. Each trial lasted a total of two hours, following the 

same schedule as the first one, and was repeated 5 times, once each day.

The third section was identical to the second, which I decided to repeat to test for improvement 

between no training and 5 days of training.

I implemented a two-day pause between each section, to account for satiation.

Results

Performance and errors

Before proceeding with the main analysis, I fully reviewed the video recording of the experiment 

and compared it with the automated data collection of the machine. This process was, in theory, 

superfluous. However, because this was the first experiment ever carried out on this system, I 

needed to assess its reliability and correctness.

In two out of the 300 total training trials, the system registered a total of 200 activations of the 

wrong sensor, whereas reviewing the video showed clearly that the subject never touched either 

sensor. This error was probably due to an imprecise setting of the trimmer controlling the threshold 

level of the aforementioned sensor. In fact, the two trials were of two consecutive days from the 

same machine. The two trials were excluded from the analysis.

Analysis procedure

Analyses were carried out with the statistical software R 3.3.3 [183]. Only the main analysis is 

reported here, for the full script, see Appendix 6. As suggested by Forstmeier and Schielzeth [240], I 
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included in the models only factors that I had an a-priori reason for including. I employed a 

generalized linear mixed effect model, with subject as a random effect, using the package lme4 

[185] with a Poisson error structure, since the dependent variable (the number of activations) was a 

count data. The model was the following:

Number of activations =

sensor (blue/correct or yellow/wrong) *

test block (1 or 2) *

test number (1 to 5 of the test block) +

random effect (subjects)

The goodness of the fit was checked with the package DHARMa [189], I had to ascertain a case of 

zero   inflation.   Accordingly,   the   data   were   remodeled   with   the   package   pscl   [190,241]. 

Subsequently, the significance of the model predictors was calculated with an analysis of deviance 

carried out with the package car [186]. Afterwards, a post-hoc Bonferroni corrected analysis was 

run on the factor that showed to have an effect on the dependent variables with the package 

emmeans [187]. Lastly, the plots were generated trough the package ggplot2 [242].

Experiment results

The results are summarized in figure 3.6. From the model emerged a significant difference between 

sensors (correct or wrong) (GLMM analysis of deviance, chi-square = 45.297, p-value < 0.0001) 

and a significant different between blocks (GLMM analysis of deviance, chi-square = 12.6204, p-

value = 0.0004) but no effect of the test number (GLMM analysis of deviance, chi-square = 2.4558, 

p-value = 0.117) nor of any of the interactions. The post-hoc analysis revealed that overall the 

spiders activated more the correct sensor in respect to the wrong sensor (GLMM post-hoc, estimate 

= 0.893, SE = 0.132, z-ratio = 6.751, p-value < 0.0001) and, in general, activated sensors less, 

regardless of their value (correct or wrong), in the first test block over the second one (GLMM post-

hoc, estimate = -0.449, SE = 0.128, z-ratio = -3.494, p-value = 0.0029). More specifically, the 

spiders preferred the correct sensor over the wrong sensor both in the first (GLMM post-hoc, 

estimate = 0.732, SE = 0.177, z-ratio = 4.127, p-value = 0.0002) and in the second block (GLMM 

post-hoc, estimate = 1.053, SE = 0.189, z-ratio = 5.56, p-value < 0.0001). Moreover, the spider 

activated more times the correct sensor in the second block over the first block (GLMM post-hoc, 

estimate = 0.610, SE = 0.189, z-ratio = 3.233, p-value = 0.0074). However, there was no difference 
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in the number of activations for the wrong sensor between blocks (GLMM post-hoc, estimate = -

0.288, SE = 0.173, z-ratio = -1.669, p-value = 0.5708).

Figure 3.6 – Average number of activations (dots) for each sensor (blue/correct or yellow/wrong), 
with standard errors. On the X axis the two different blocks. Both in the first and in the second 
block the spider activated the correct sensor more than the wrong one. Between block one and 
block two there is an increase in the amount of the correct sensor activations, while there is no 

increase in the wrong one.

Results Discussion

The training procedure appeared to be successful since the spider increased its number of visits 

towards the correct, blue sensor over test blocks while maintaining the same amount of visits to the 

wrong, yellow sensor. Note that I did not expect a decrease in the number of visits to the yellow 

sensor since it presents no negative effect for the spiders. Accordingly, the spider continued to visit, 

most   likely   randomly,   the   wrong   sensor.   On   the   other   hand,   the   increase   in   the   number   of 

activations of the blue sensor attests that the spiders were increasingly attracted to it over test 

blocks, suggesting that they learned the association between the sensor and the reward.

It is worth discussing that in the first test block, I observed a higher number of visits to the correct 

sensor  over  the  wrong  sensor.  There  are  two  possible  explanations   for this   effect.  This  early 
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preference could be an effect of a pre-existing innate preference of the spiders for the blue over the 

yellow colour. This explanation is indeed likely, because blue is a primary colour for these species, 

whereas yellow is not [292] (note, however, that jumping spiders should be able to perceive yellow, 

because its wavelength is perceived by the green photoreceptors). It is however important to point 

out that  Liedtke & Schneider [263] tested Marpissa muscosa (Family: Salticidae) in two colour-

discrimination tasks. In the first, the spiders were asked to learn to discriminate between a yellow 

and a blue drop, one of which contained sugar and the other citric acid. The authors did not find any 

difference in the leaning speed for either colour, nor did they observe any innate preference. In the 

second task, they  tested  reversal learning  abilities  of the  aforementioned  species, which  were 

required to walk behind a blue or a yellow wall to find the sucrose drop. Again, the authors did not 

find any effect of the colour of the rewarded wall on learning speed and reversal efficiency. These 

results cannot be simply generalized to our model experiment, as Marpissa muscosa and Phidippus 

regius are two very different species of jumping spiders. However, these findings can still provide 

insight on the plausibility of an innate preference.

The early preference could also be an effect of the habituation phase: in fact, I used a blue-coloured 

sucrose solution to form an early association between the colour and the reward. If this is the case, it 

suggests that the spiders may be able generalize a characteristic of the reward (the colour) to new 

objects, an impressive ability that will require future studies to be more deeply understood. In the 

future,   the   two   hypotheses   about   the   origin   of   the   preference   in   the   first   block   could   be 

disentangled, replicating the experiment using yellow-coloured sucrose solution and having the 

yellow, not the blue, sensor as the correct one. Because this experiment was intended only as a 

validation of the system, rather than an inquiry on jumping spiders’ visual discrimination, the origin 

of the preference in the first block is of marginal importance. Even in the highly unlikely hypothesis 

that the spider only perceived the blue sensor, the increased activation for the latter between blocks 

clearly shows a direct intention towards it, because a general random activity increase would have 

been registered by both sensors.

In this experiment, no effect of the training day was found. The lack of a clear learning pattern 

seems counter-intuitive, as there is an overwhelming amount of literature showing that learning 

process happens over time, with a day-by-day improvement [339]. It has to be considered, however, 

that this system does not solve the inherent problems of training jumping spiders but just bypasses 

them. These animals are still hardly motivated, and will, during many trials, not activate any sensor, 

as demonstrated by the zero-inflation of the model distribution. The Skinner-box permits testing a 
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high number of subjects for a prolonged time, so the random unmotivated behaviours are eventually 

filtered out in the test blocks, letting the learning effect rise above significance. However, with this 

sample size, a trial-by-trial effect cannot be observed. Anecdotally, in Appendix 6, a day-by-day 

graph is provided. No learning trend is apparent; however, in each block (but especially in the first), 

an overall decrease of activity can be appreciated, probably due to the drop in motivation. Future 

studies may focus on the learning pattern and timing, increasing both the sample size and the 

number of consecutive trials.

Overall, the SPiDbox was shown to be a reliable and effective way of training jumping spiders, as 

well as being able to provide useful insight into how learning takes place.

Flawed registration of the sensors

A few words are worth spending over the limitation of the system, especially regarding the sensor 

errors that I observed after data collection.

The comparator-based activation of the sensor is based on a fixed threshold, provided by the manual 

adjustment of a trimmer. As such, it could not account for the natural fluctuations of the ambient 

light, forcing the experimenter to set the threshold as low as possible to avoid false positives. This, 

in turn, caused the problem of fast activation and deactivation while the spider moved on top of the 

sensor, as described in the results section: because the threshold was set so low, minimal movement 

of the animal could cause the reading to bounce above and below the set level. Moreover, this 

system relied too much on human judgement, because the trimmer had to be manually set by the 

experimenter. This did not cause problems most of the time but might have still caused misreadings, 

as happened in two trials (see results sections). Both these problems were solved easily during data 

analysis, but an improvement to the system is still needed.

For  this   purpose,  I  decided   to  design  a   new   reading  system,   switching  from   the  comparator, 

threshold-based digital reading (0 and 1) to an analogical reading. Both the comparator and the 

trimmer were removed, feeding the output of the voltage divider directly to an analogical to digital 

converter (ADS1116, breakout board from Adafruit). In this way, the Raspberry Pi can read the 

exact resistance of both sensors in each iteration, calculating two separate moving averages with the 

following formula:

x̄=(c⋅x)+[( 1−c)⋅̄x1]
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where x̄ is the calculated average, x is the reading for the current cycle, x̄1 is the calculated 

average of the previous cycle, and c is a constant that determines the level of smoothing applied 

to the resulting variable. Note that the reading x is already being smoothed, averaging the last 

three   raw   readings xr together,   in   order   to   remove   small   random   fluctuations.  To   detect   an 

activation of the sensor, instead of using a threshold value as before, a Δ value was calculated for 

each raw reading, defined as the difference between  x (the current read value) and  x̄ (the 

moving average). An activation was registered when  Δ exceeded a predetermined value t . 

When an activation was detected, the moving average is locked on the last calculated value.  The 

activation   was   considered   over   when   the   value   ofΔ became   inferior   than
t
2

,   preventing 

unwanted   deactivations   due   to   random   fluctuations   of  Δ around   the   value t .   When   a 

deactivation occurs, the moving average is then calculated again as normally (figure 3.7).

Future directions and alternative usages

It is worth noting that this system can not only be used to train jumping spiders but could be 

extended to many similarly sized, solitary arthropods. The consumption of sucrose solution is 

widespread amongst many invertebrates, and as such, I expect it to be a suitable reward for many 

species. However, the biology and ethology of each species should be thoroughly understood before 

designing the training procedure. The system could also be used for social arthropods, but it would 

require   some   modifications:   The   experimental   box   should   be   connected   to   the   colony,   and 

locomotor systems should be taken into account (for a flying insect, a complete restructuring of the 

system would be needed. However, for bees and bumblebees, other alternatives already exist [329]).

The   SPiDbox   is   an   effective   system   for   the   training   of   jumping   spiders.   Due   to   the   easy 

accessibility and low cost of the components, as well as the open-source nature of the software and 

design, it could provide scientists with the needed instruments to study this fascinating arthropod 

family. As per its intended purpose, this system can be used to carry out training for complex 

stimuli   and   behaviours,   increasing   the   number   of   sensors,   changing   their   positions,   inserting 

complex patterns of activations, and overall expanding the possibilities to study skills that were up 

to now out of reach of existing experimental methodologies.
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Figure 3.7 – Simulated data describing how the moving average system works. Y axis = Voltage 
readings from the analogue to digital converter; X axis = Time (seconds). Black line represent raw 

readings (xr); yellow line represent the smoothed reading x, averaging the last three xr; red line 
represent the moving average x̄ ; light blue line represent the moving average x̄ minus the 

defined value t; dark blue line represent the moving average minus
t
2

. Three sections of the 

graph have been highlighted to point out how this system functions. A: the voltage readings drop 
slightly, as can happen in case of a general change of light in the environment. In this occasion, the 

moving average can adjusts itself. B: example of a contact of the spider with the sensor. The 
readings suddenly drop and their difference to the moving average ( Δ ) drops below t. In this 

case a contact is registered by the program, and the moving average is locked on the last calculated 
value. Note how around 450 seconds in the graph the values briefly go above the x̄−t line. This 
can happen when the spider move while on top of the sensor, maybe uncovering some sections of it 

and letting more light pass before covering it again. The system does not register this event, as to be 

considered the end of the contact the value has to raise above the x̄−
t
2

line. C: a sudden change 

in values, that can occur for example if the spider cast its shadow on the sensor while walking on 
the ceiling. This is however not registered as a contact, as the value does not go below x̄−t . D: a 

random voltage fluctuation, or misreading by the machine, can cause the raw reading to drop 
significantly, even below x̄−t . However, the first smoothing averaging the last three readings 

prevents the system from considering these events as contacts by the spiders.
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In this thesis, I presented the main studies carried out for my PhD project focused on the cognitive 

abilities that small brains display through their resulting complex behaviour. First, I reported the 

work done on ants. In the first study about value perception in a risk context, I found evidence in 

support of the idea that their decision process is based on a perceptual mechanism: the Weber-

Fechner law. As already mentioned in the introduction section of the study, this system is very 

advantageous, and requires a very limited number of neurons that can evaluate and compare an 

otherwise immense amount of information. This fits in the broader context of simplification: a small 

network able to decode a wide variety of stimuli from the environment is advantageous with respect 

to associative mechanisms. In fact associative learning would require to register each individual 

value and compare it with others one-by-one. In the second study, I tested the ant memory using an 

information  integration  paradigm.  The   animals   have  shown  to  be  able  to   retain   and  combine 

information of multiple sensory modalities in order to locate the reward, suggesting an integration 

skill far deeper than we expected. Perhaps more interestingly, the ants seemed able to perform this 

task in just a single trial, suggesting that their learning speed is independent of the amount of 

information presented. Unfortunately, the results of this second condition were not conclusive. Yet, 

these results inspire some further discussion how this information load-independent mechanism 

may be beneficial for the ants. With a small brain, the amount of data that can be recorded drops 

significantly, while a more complex mechanism, such as episodic-like memory, could solve this 

problem with a lower number of neurons. To conclude, both studies carried out on ants support the 

“economy of design” brain strategy.

Subsequently, as for the main topic of my PhD project, I reported the studies performed with 

Salticidae. In the first study I tested the visual system of Phidippus regius, to inquire if they employ 

the Gestalt principles, as a way to categorize, discriminate and interpret visual stimuli with few 

perceptual rules instead of a more demanding “pixel by pixel” system. Unfortunately, the results 

were inconclusive, since the training procedure may have not been successful. For this reason I 

designed and implemented an automated system, capable of training the spiders in a variety of 

associative tasks, allowing to investigate memory, vision, and a variety of cognitive processes. This 

open-source and inexpensive system will function as a tool supporting experimental endeavours 

aimed at deepening our understanding of how much cognition is truly spread in the whole animal 

kingdom.
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The studies reported in this thesis join the ever-growing scientific literature about cognition in 

animals that we would have never thought capable of complex neural processes just 30 years ago. 

Nowadays,   impressive   feats   are   reported   in   more   and   more   species,   even   outside   the   animal 

kingdom: a new field of psychology has been recently sprouting, focusing on the study of cognition 

in non-neuronal organisms. Plants, for example, can orient themselves in space [340] and perceive 

and interpret complex environmental stimuli such as those conveyed by light wavelengths or air 

vibrations [341,342]. Even a unicellular organism, the slime mould, has been found capable of 

decision making [141,343], learning [344], spatial orientation [345] and many others [346].  It is 

crucial   to   remember   that   neurons   themselves   do   not   produce   cognition,   which   is   instead   the 

outcome   of   the   connection   network.   Brain   cells,   however,   are   not   the   only   ones   capable   of 

transferring information between one another. The ability to produce signalling impulses pre-dates 

the evolution of neurons [347–350]. The fact that cognition may manifest both in miniature brains 

and in organisms that do not possess a brain at all, forces us to reconsider the need for a massive 

and expensive neuronal tissue. Why do we, humans, have such a big brain? The ability to produce 

complex behaviour is unlikely to be the cause. The struggle to find a correlation between the 

number of neurons in the cortex and cognitive performance (see the introduction,   [25]), should 

probably be redimensioned as some forms of cognition may pre-exist the evolution of a brain itself. 

Today more and more scientists agree to the idea that cognition (graded forms of it) is indeed 

widespread in the whole animal kingdom [32], even in tiny animals [14,94].

From the birth of philosophy in the western world, we have been convinced that many abilities were 

unique   to   humans:   cultural   transmission,   teaching,   language   and   many   others.   Experimental 

evidence has been accumulating that these abilities are present in a variety of species, including 

miniature organisms [85,86,92,351,352]. In light of this evidence, we should be cautious with any 

future claim of uniqueness – of humans, mammals or vertebrates – as such claims may, in time, be 

proven false. It has been proposed that too often our inquiry is driven by our perspective [323]: we 

describe animals’ abilities with definitions rooted in the human experience. Moreover, also our 

definition of complexity is based on our own perception (see the introduction: we consider rule 

learning to be more complex than associative learning, however miniature brains are more likely to 

produce rule learning circuits than associative ones  [14,67–73,78]). These preconceptions inform 

our scientific process and our interpretation of results: the Ockham’s razor [353] dictates to use the 

least amount of assumptions and the simplest explanation to interpret an event. When asked to 
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formulate a hypothesis on a newly observed behaviour, we should carefully consider that cognition 

may be in fact the simplest and most likely explanation.

Thanks to this promising and intriguing evidence, the field of studies interested in information 

processing in miniature brains is constantly growing. Yet, our understanding of how most of these 

animals function and thrive in their natural environment is still greatly limited. Henceforth, future 

studies on new and different species will shed more and more light on the evolution of cognition, its 

origin and its ultimate goal. I am convinced that a better understanding of ourselves among the 

other forms of life on earth shall come from understanding the creatures furthest from us.
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Appendix 1 – pilot experiments: Support for the perceptual basis of irrational risk aversion in ants

Appendix 1 – pilot experiments: Support for the perceptual basis of 
irrational risk aversion in ants

Ant perception of 0.1, 0.3 and 0.9 sucrose molarities

In experiment 3, the ants were presented with feeders offering 0.1, 0.3 and 0.9 molar sucrose. 

Relative to experiments 1 and 2, the medium and the low quality drop had very similar molarities in 

absolute   terms,   so   that   we   decided   to   run   a   pilot   experiment   to   test   whether   the   ant   could 

discriminate, and subsequently choose reliably between, the three molarities.

We   ran   two   testing   blocks.   In   the   first,   the   ants   were   presented   with   two   drops   of   different 

molarities, 0.1 and 0.3, and were trained to associate each to a smell. We followed the methodology 

described   for   the   main   experiment   (see   methods   section   in   the   main   paper),   alternating   the 

presentation of the low quality alternative and the high quality alternative in the 8 training visits. 

Afterwards we tested the ants in the Y-maze, repeating the test 5 times. The second experiment was 

identical to the first, but the ants were presented with 0.3 and 0.9 molarities. We did this last block 

just as a control, since as 0.3 and 0.9 are further apart than 0.55 and 1.0 we were confident that they 

could discriminate between the two. We tested 20 ants for each block (40 in total), stemming from 6 

different colonies. First, we tested the robustness of the ants’ choices, checking whether with 

subsequent visits the number of ants choosing the high value drop decreased. We modelled as 

follows:

High value choice (all tests) =
Testing visit (1-5)+
Contrast (0.1vs0.3 or 0.3vs0.9)
random effect ( individual ant nested in colony)

We found that the ants did not change their preference over subsequent visits for either of the two 

contrasts (table S3). This could be because this task is easier than the risk vs safe evaluation, having 

to compare only two molarities in which one is definitely better than the other. For the subsequent 

analysis, we kept all 5 testing visits. We modelled the data as follows:

High value choice (all tests) =
Decision line+
Contrast (0.1vs0.3 or 0.3vs0.9)
random effect ( individual ant nested in colony)

Then, we ran a post-hoc test to check which of the groups differed from chance level. We found that 

the ants significantly preferred 0.3 over 0.1 when considering both the first decision line and the 

second decision line. However, we found that the ants did not significantly preferred 0.9 over 0.3, 
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remaining at chance level (Table S4). This was surprising to us, as the contrast between 0.9 and 0.3 

should be easier to sense, or at least equally difficult if the ants follow a logarithmic perception, and 

in both cases easier than the contrast between 0.55 and 1.0. We suspect that, due to the lower 

sample size in these experiments, we have experienced a type II error (false negative). However, we 

decided to present our data as it is, without a post-hoc increase in sample size, following good 

scientific practice.

Factor Chi-square Degrees of freedom p-value

Contrast 3.5857 1 0.058

Testing visit 1.46 1 0.227

Contrast:Testing visit 0.024 1 0.876

Table S3 – Analysis of deviance (Type II chi-square test) of the model to check difference between 
testing visit. For this model we had to drop colony as random factor because the model did not 
converge otherwise. Note that both Testing visit and the interaction between Testing visit and the 
contrast are not significant. We can conclude that there is no difference between the test visits and 
there is no difference between the two contrast in testing visits change.

Contrast Decision line probability SE Z ratio p-value

0.1 vs 0.3 First 0.86 0.057 3.844 0.0005

0.1 vs 0.3 Last 0.87 0.054 3.988 0.0003

0.3 vs 0.9 First 0.648 0.095 1.461 0.576

0.3 vs 0.9 Last 0.724 0.085 2.264 0.094

Table S4 – post-hoc analysis of the probability of ants choosing the high value alternative, 
bonferroni corrected.

Ant preference among 3 molarities

In the main experiment the ants  were presented with three different food qualities, and were 

required to remember all three in order to make a choice between the two feeders. We decided to 

run a pilot experiment on order to test whether the ants could remember three molarities, rather than 

just the best one among others.

The ants performed 9 sequential visits to a runway, identical to the one of the main experiment. At 

the end of the runway the ant may find either a 1.5M drop, always unscented, a 1.0M drop, either 

rosemary or lemon scented, and a 0.25M drop, scented with the other odour (see table S5).
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Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 Visit 7 Visit 8 Visit 9

1.5M 1.0M 0.25M 1.5M 1.0M 0.25M 1.5M 1.0M 0.25M

1.5M 0.25M 1.0M 1.5M 0.25M 1.0M 1.5M 0.25M 1.0M

Table S5 – Training visit sequence for the three molarity experiment. Bold text 
represent scented visits. The same molarity always have the same scent.

Afterwards we tested the ant preference between the 1.0M scent and the 0.25M scent in the Y-maze, 

repeating the test 5 times. If the ants could only learn the best alternative among the presented ones, 

they should choose randomly between the second best and the worst. However, if the ants can 

remember and compare all three values, they should prefer the 1.0M.

We planned to test 32 ants coming from 8 different colonies. However, after having tested 15 ants 

coming from 5 different colonies we decided to stop the pilot, given the clear preference of the 

animals: On the first trial, both initial and final decision, 100% of the ants choose the scent 

associated with 1.0M. We observed a decrease on the ants performance in subsequent files, however 

the   overall   percentage   remained   at   92%.   While   we   are   aware   that   stopping   an   experiment 

prematurely when results are as expected can lead to type I errors (false positives), we felt that the 

unambiguous nature of these results warranted doing so here.

Risk preference in the context of losses (maintained on 1.5M sucrose)

Prospect Theory predicts that individuals should be risk averse in the context of gains and risk 

prone in the context of losses. The reference point from which we decide if something is a gain or a 

loss is not necessarily 0: we may take an expected value as a reference. For ants, this value it could 

be the feeding solution they are maintained on, normally 0.5M. We decided to replicate experiment 

1 (see main paper) with 4 colonies that had been fed ad libitum 1.5M sucrose instead of the usual 

0.5M for one month prior testing. 63 ants were tested in total. Training and testing procedure were 

identical to those described in the main paper. We found that 82% (52/63) of the ants preferred the 

safe alternative. All data and analysis are provided in Appendix 2.
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Appendix 2 – Data Analysis of the study: Support for the perceptual 
basis of irrational risk aversion in ants

This supplement provides the entire R script and output of the statistical analysis we performed and 

figures produced, in their original form. It is presented in the spirit of open and transparent science, 

but has not been carefully curated.

Data analysis

first I load packages

library(lme4)
library(DHARMa)
library(car)
library(emmeans)
library(reshape2)
library(ggplot2)
library(knitr)
library(pscl)

set.seed(123)#set seed for replicability in random simulations

Binomial Choice

Preliminary questions

first, I want to know if initial and final choice differ

Cond 1

fsdiff<-melt(risksa, measure.vars = c("firstchoicesafe","endchoicesafe"))

mdiff<-glmer(value~variable+(1|colony/antID),data=fsdiff,family="binomial")
## boundary (singular) fit: see ?isSingular
Anova(mdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: value
##           Chisq Df Pr(>Chisq)
## variable 0.5111  1     0.4746
e<-emmeans(mdiff, ~variable, type="response")
pairs(e)
##  contrast                        odds.ratio    SE  df z.ratio p.value
##  firstchoicesafe / endchoicesafe      0.814 0.234 Inf -0.715  0.4746 
## 
## Tests are performed on the log odds ratio scale
there is no difference between initial and final choice, I will now on only use the initial for further 

analysis
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Cond 2

fsdiff<-melt(riskirr, measure.vars = c("firstchoicesafe","endchoicesafe"))

mdiff<-glmer(value~variable+(1|colony/antID),data=fsdiff,family="binomial")
Anova(mdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: value
##           Chisq Df Pr(>Chisq)
## variable 0.2903  1       0.59
e<-emmeans(mdiff, ~variable, type="response")
pairs(e)
##  contrast                        odds.ratio    SE  df z.ratio p.value
##  firstchoicesafe / endchoicesafe        1.1 0.195 Inf 0.539   0.5900 
## 
## Tests are performed on the log odds ratio scale
there is no difference between initial and final choice, I will now on only use the initial for further 

analysis

Cond 3

fsdiff<-melt(riskgeo, measure.vars = c("firstchoicesafe","endchoicesafe"))

mdiff<-glmer(value~variable+(1|colony/antID),data=fsdiff,family="binomial")
## boundary (singular) fit: see ?isSingular
Anova(mdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: value
##           Chisq Df Pr(>Chisq)
## variable 0.1981  1     0.6563
e<-emmeans(mdiff, ~variable, type="response")
pairs(e)
##  contrast                        odds.ratio    SE  df z.ratio p.value
##  firstchoicesafe / endchoicesafe        1.1 0.243 Inf 0.445   0.6563 
## 
## Tests are performed on the log odds ratio scale
there is no difference between initial and final choice, I will now on only use the initial for further 

analysis

now, I want to know if the visits differ from one another

Cond 1

risksa$visit<-as.numeric(risksa$visit)
mvisdiff<-glmer(firstchoicesafe~visit+(1|colony/antID),data=risksa,family="bino
mial", 
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                glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
1000000000)))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.0157403 (tol =
## 0.001, component 1)
mvisdiff<-glmer(firstchoicesafe~visit+(1|antID),data=risksa,family="binomial", 
                glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
1000000000)))
Anova(mvisdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: firstchoicesafe
##       Chisq Df Pr(>Chisq)   
## visit 9.668  1   0.001875 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mvisdiff)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: firstchoicesafe ~ visit + (1 | antID)
##    Data: risksa
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
## 
##      AIC      BIC   logLik deviance df.resid 
##    196.7    206.4    -95.3    190.7      189 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8804  0.3022  0.3472  0.5081  0.8520 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  antID  (Intercept) 0.3172   0.5632  
## Number of obs: 192, groups:  antID, 64
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   9.0752     2.5512   3.557 0.000375 ***
## visit        -0.7616     0.2449  -3.109 0.001875 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## visit -0.996
the percentage of ants choosing safe decreases with successive visits. this means that more and 

more ants after not finding the sugar drop start doing a random search. I will from now on only 

observe the first visit, being it a clearer indication of choice
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Cond 2

mvisdiff<-glmer(firstchoicesafe~visit+(1|colony/
antID),data=riskirr,family="binomial", 
                glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
100000)))
Anova(mvisdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: firstchoicesafe
##        Chisq Df Pr(>Chisq)  
## visit 5.8851  1    0.01527 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mvisdiff)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: firstchoicesafe ~ visit + (1 | colony/antID)
##    Data: riskirr
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##    415.4    430.4   -203.7    407.4      316 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8473 -1.1416  0.6020  0.7331  1.0362 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  antID:colony (Intercept) 0.14277  0.3778  
##  colony       (Intercept) 0.03706  0.1925  
## Number of obs: 320, groups:  antID:colony, 64; colony, 8
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  2.96566    0.97581   3.039  0.00237 **
## visit       -0.20978    0.08647  -2.426  0.01527 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## visit -0.988
the percentage of ants choosing safe decreases with successive visits. this means that more and 

more ants after not finding the sugar drop start doing a random search. I will from now on only 

observe the first visit, being it a clearer indication of choice
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Cond 3

mvisdiff<-glmer(firstchoicesafe~visit+(1|colony/
antID),data=riskgeo,family="binomial", 
                glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
100000)))
## boundary (singular) fit: see ?isSingular
Anova(mvisdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: firstchoicesafe
##        Chisq Df Pr(>Chisq)
## visit 0.5282  1     0.4674
summary(mvisdiff)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: firstchoicesafe ~ visit + (1 | colony/antID)
##    Data: riskgeo
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##    282.4    295.6   -137.2    274.4      196 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.1864 -0.9476  0.6974  0.9092  1.2280 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  antID:colony (Intercept) 0.3117   0.5583  
##  colony       (Intercept) 0.0000   0.0000  
## Number of obs: 200, groups:  antID:colony, 40; colony, 10
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.94158    1.16051   0.811    0.417
## visit       -0.07576    0.10425  -0.727    0.467
## 
## Correlation of Fixed Effects:
##       (Intr)
## visit -0.989
## convergence code: 0
## boundary (singular) fit: see ?isSingular
there is no difference between visits. I will use only first for consistency, but I expect random 

choice. in this case, it is clear why there is no decrease: if the choice is already random there is no 

room for reverting to random choice with subsequent visits.
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Modeling

now to the actual model. I drop antID because I kept only one observation for each ant

Cond 1

risksasing<-subset(risksa,risksa$visit==9)

mExp1<-glmer(firstchoicesafe~firstfeed*firstrisk+(1|
colony),data=risksasing,family="binomial", 
             glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
simres<-simulateResiduals(mExp1) #standard seed for random values is 123
plot(simres, asFactor=T)

model is good here

Anova(mExp1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: firstchoicesafe
##                      Chisq Df Pr(>Chisq)
## firstfeed           0.7092  1     0.3997
## firstrisk           0.0000  1     1.0000
## firstfeed:firstrisk 0.0000  1     1.0000
no effect of any of the factors. will just test overall preference
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meanobj <- emmeans(mExp1,~1, type="response")
(test(meanobj))
##  1        prob     SE  df z.ratio p.value
##  overall 0.911 0.0367 Inf 5.142   <.0001 
## 
## Results are averaged over the levels of: firstfeed, firstrisk 
## Tests are performed on the logit scale
ants prefer the safe 91%

Cond 2

riskirrsing<-subset(riskirr,riskirr$visit==9)

mExp2<-glmer(firstchoicesafe~firstfeed*firstrisk+(1|
colony),data=riskirrsing,family="binomial", 
             glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))

simres<-simulateResiduals(mExp2) #standard seed for random values is 123
plot(simres, asFactor=T)

good model also here

Anova(mExp2)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: firstchoicesafe
##                      Chisq Df Pr(>Chisq)
## firstfeed           2.0148  1     0.1558
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## firstrisk           0.1969  1     0.6572
## firstfeed:firstrisk 1.8066  1     0.1789
still, no effect of factors.

meanobj<-emmeans(mExp2,~1, type="response")
(test(meanobj))
##  1        prob     SE  df z.ratio p.value
##  overall 0.792 0.0678 Inf 3.248   0.0012 
## 
## Results are averaged over the levels of: firstfeed, firstrisk 
## Tests are performed on the logit scale
ants prefer the safe 79%

Cond 3

riskgeosing<-subset(riskgeo,riskgeo$visit==9)

mExp3<-glmer(firstchoicesafe~firstfeed*firstrisk+(1|
colony),data=riskgeosing,family="binomial", 
             glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
simres<-simulateResiduals(mExp3) #standard seed for random values is 123
plot(simres, asFactor=T)

still, good model

Anova(mExp3)
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## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: firstchoicesafe
##                      Chisq Df Pr(>Chisq)  
## firstfeed           4.4237  1    0.03544 *
## firstrisk           0.0146  1    0.90388  
## firstfeed:firstrisk 0.6679  1    0.41377  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
there is an effect of the first presented feeder. first of all let’s look at overall percentage

meanobj<-emmeans(mExp3,~1, type="response")
(test(meanobj))
##  1        prob     SE  df z.ratio p.value
##  overall 0.535 0.0864 Inf 0.403   0.6870 
## 
## Results are averaged over the levels of: firstfeed, firstrisk 
## Tests are performed on the logit scale
ants prefer the safe 53%.

meanobj<-emmeans(mExp3,~firstfeed, type="response")
## NOTE: Results may be misleading due to involvement in interactions
pairs(meanobj)
##  contrast     odds.ratio   SE  df z.ratio p.value
##  risky / safe      0.216 0.15 Inf -2.207  0.0273 
## 
## Results are averaged over the levels of: firstrisk 
## Tests are performed on the log odds ratio scale
meanobj
##  firstfeed  prob    SE  df asymp.LCL asymp.UCL
##  risky     0.348 0.107 Inf     0.175     0.574
##  safe      0.712 0.104 Inf     0.477     0.870
## 
## Results are averaged over the levels of: firstrisk 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale
more ants go to the safe when this is presented fist, more ants go to the risky when is presented first. 

overall is random! probably in front of a random choice they just go for the first experienced.

Graph together

need to calculate a full model to get SE in order to plot.

risksing<-subset(risk,risk$visit==9)
library(plyr)
risksing$condition<-revalue(risksing$condition, c("GeomAvrg"="Exp3", 
"Irrational"="Exp2","sameAvg"="Exp1"))

mTot <- glmer(firstchoicesafe~condition+(1|
colony),data=risksing,family="binomial", 
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              glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
100000)))
## boundary (singular) fit: see ?isSingular
Anova(mTot)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: firstchoicesafe
##            Chisq Df Pr(>Chisq)    
## condition 16.918  2   0.000212 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
meanobj<-emmeans(mTot,~condition, type="response")
toplot1<-as.data.frame(meanobj)
(pairs(meanobj))
##  contrast    odds.ratio     SE  df z.ratio p.value
##  Exp3 / Exp2      0.368 0.1579 Inf -2.330  0.0517 
##  Exp3 / Exp1      0.114 0.0609 Inf -4.068  0.0001 
##  Exp2 / Exp1      0.310 0.1604 Inf -2.263  0.0611 
## 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## Tests are performed on the log odds ratio scale
ggplot(toplot1,aes(x=condition,y=prob))+
  ylab("proportion of ants choosing safe")+
  ylim(0,1)+
  scale_x_discrete(name= NULL,
                   limits=c("Exp1","Exp2","Exp3"),
                   labels=c("Exp1" = "Exp1\nSafe: 0.55\nRisky: 0.1/1.0", 
                            "Exp2" = "Exp2\nSafe: 0.55\nRisky: 0.1/1.5",
                            "Exp3" = "Exp3\nSafe: 0.3\nRisky: 0.1/0.9"))+
  theme_light()+
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12),
        axis.title.y = element_text(size=14))+
  geom_label(x=1, y=0.15, label="n = 64",size=5, aes(fontface=3))+
  geom_label(x=2, y=0.15, label="n = 64",size=5, aes(fontface=3))+
  geom_label(x=3, y=0.15, label="n = 40",size=5, aes(fontface=3))+
  geom_hline(yintercept = 0.5,linetype="dotted")+
  geom_point()+
  geom_errorbar(aes(ymin=prob-SE,ymax=prob+SE))
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Pheromone deposition

I will look at the pheromone deposited on the way to the drop and back to the nest for each 

experiment across visits.

Cond1

To the drop

risksa$visit<-as.numeric(risksa$visit)

mpExp1<-glmer(phergo~visit*mol+(1|colony/antID),data=risksa,family="poisson", 
              glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
100000)))
## boundary (singular) fit: see ?isSingular
simres<-simulateResiduals(mpExp1) #standard seed for random values is 123
plot(simres, asFactor=T)
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the model is zero inflated. let’s remodel

mpExp1 <- zeroinfl(phergo ~ visit*mol + 1 | colony/antID, data = risksa)
## Error in optim(fn = loglikfun, gr = gradfun, par = c(start$count, 
start$zero, : valore non finito fornito da optim
does not work. I will remove colony from random effect.

mpExp1 <- zeroinfl(phergo ~ visit*mol + 1 | antID, data = risksa)

Anova(mpExp1)
## Analysis of Deviance Table (Type II tests)
## 
## Response: phergo
##           Df   Chisq Pr(>Chisq)    
## visit      1  1.7587  0.1847906    
## mol        2 12.9922  0.0015093 ** 
## visit:mol  2 14.4692  0.0007212 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
meanobj<-emmeans(mpExp1,~visit*mol,type="response")
contrast(meanobj,list(mol0.1vs0.55=c(1,-1,0),
                      mol0.1vs1.0=c(1,0,-1),
                      mol0.55vs1.0=c(0,1,-1),
                      SafeVsRisky=c(-0.5,1,-0.5)),
         adjust="bonferroni")

135



APPENDICES

##  contrast     estimate    SE  df z.ratio p.value
##  mol0.1vs0.55   -0.339 0.224 Inf -1.508  0.5258 
##  mol0.1vs1.0     0.319 0.243 Inf  1.311  0.7599 
##  mol0.55vs1.0    0.657 0.227 Inf  2.891  0.0154 
##  SafeVsRisky     0.498 0.190 Inf  2.616  0.0356 
## 
## Results are averaged over the levels of: antID 
## P value adjustment: bonferroni method for 4 tests
risksap<-subset(risksa,risksa$visit<9) #just remove tests
risksap <- droplevels(risksap)

phg1<-ggplot(risksap,aes(x=visit,y=phergo, color=mol))+
  labs(title = "A")+
  scale_color_brewer(name="molarity", palette="Dark2")+
  ylab("Pheromone deposited to the feeder")+
  scale_x_discrete(limits=c(1,2,3,4,5,6,7,8))+
  ylim(0,20)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_blank(),
        axis.title.y = element_text(size=14),
        plot.title = element_text(size=18),
        legend.position="none")+
  geom_jitter(width = 0.2,height=0)+
  geom_smooth()

Back to the nest

mpExp1<-glmer(pherbk~visit*mol+(1|colony/antID),data=risksa,family="poisson", 
              glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
100000)))
simres<-simulateResiduals(mpExp1) #standard seed for random values is 123
plot(simres, asFactor=T)
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the model is zero inflated. let’s remodel

mpExp1 <- zeroinfl(pherbk ~ visit*mol + 1 | colony/antID, data = risksa)
## Error in optim(fn = loglikfun, gr = gradfun, par = c(start$count, 
start$zero, : valore non finito fornito da optim
does not work. I will remove colony from random effect.

mpExp1 <- zeroinfl(pherbk ~ visit*mol + 1 | antID, data = risksa)

Anova(mpExp1)
## Analysis of Deviance Table (Type II tests)
## 
## Response: pherbk
##           Df   Chisq Pr(>Chisq)    
## visit      1  5.1128    0.02375 *  
## mol        2 85.9726    < 2e-16 ***
## visit:mol  2  3.9549    0.13842    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
meanobj<-emmeans(mpExp1,~visit*mol,type="response")
contrast(meanobj,list(mol0.1vs0.55=c(1,-1,0),
                      mol0.1vs1.0=c(1,0,-1),
                      mol0.55vs1.0=c(0,1,-1),
                      SafeVsRisky=c(-0.5,1,-0.5)),
         adjust="bonferroni")

137



APPENDICES

##  contrast     estimate    SE  df z.ratio p.value
##  mol0.1vs0.55   -2.670 0.154 Inf -17.352 <.0001 
##  mol0.1vs1.0    -2.780 0.194 Inf -14.308 <.0001 
##  mol0.55vs1.0   -0.111 0.185 Inf  -0.597 1.0000 
##  SafeVsRisky     1.280 0.140 Inf   9.149 <.0001 
## 
## Results are averaged over the levels of: antID 
## P value adjustment: bonferroni method for 4 tests
phb1<-ggplot(risksap,aes(x=visit,y=pherbk, color=mol))+
  labs(title = "D")+
  scale_color_brewer(name="molarity", palette="Dark2")+
  ylab("Pheromone deposited back to the nest")+
  scale_x_discrete(limits=c(1,2,3,4,5,6,7,8))+
  ylim(0,20)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_text(size=14),
        axis.title.y = element_text(size=14),
        plot.title = element_text(size=18),
        legend.position="bottom")+
  geom_jitter(width = 0.2,height=0)+
  geom_smooth()

Cond2

To the drop

riskirr$visit<-as.numeric(riskirr$visit)

mpExp2<-glmer(phergo~visit*mol+(1|colony/antID),data=riskirr,family="poisson",
              glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
100000)))
simres<-simulateResiduals(mpExp2) #standard seed for random values is 123
plot(simres, asFactor=T)
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the model is zero inflated. let’s remodel

mpExp2 <- zeroinfl(phergo ~ visit*mol + 1 | colony/antID, data = riskirr)
## Error in optim(fn = loglikfun, gr = gradfun, par = c(start$count, 
start$zero, : valore non finito fornito da optim
does not work. I will remove colony from random effect.

mpExp2 <- zeroinfl(phergo ~ visit*mol + 1 | antID, data = riskirr)

Anova(mpExp2)
## Analysis of Deviance Table (Type II tests)
## 
## Response: phergo
##           Df  Chisq Pr(>Chisq)  
## visit      1 0.2798    0.59680  
## mol        2 7.4888    0.02365 *
## visit:mol  2 1.6650    0.43495  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
meanobj<-emmeans(mpExp2,~visit*mol,type="response")
contrast(meanobj,list(mol0.1vs0.55=c(1,-1,0),
                      mol0.1vs1.5=c(1,0,-1),
                      mol0.55vs1.5=c(0,1,-1),
                      SafeVsRisky=c(-0.5,1,-0.5)),
         adjust="bonferroni")
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##  contrast     estimate    SE  df z.ratio p.value
##  mol0.1vs0.55   -0.174 0.229 Inf -0.760  1.0000 
##  mol0.1vs1.5     0.323 0.265 Inf  1.217  0.8945 
##  mol0.55vs1.5    0.497 0.233 Inf  2.131  0.1324 
##  SafeVsRisky     0.336 0.189 Inf  1.771  0.3061 
## 
## Results are averaged over the levels of: antID 
## P value adjustment: bonferroni method for 4 tests
riskirrp<-subset(riskirr,riskirr$visit<9) #just remove tests
riskirrp <- droplevels(riskirrp)

phg2<-ggplot(riskirrp,aes(x=visit,y=phergo, color=mol))+
  labs(title = "B")+
  scale_color_brewer(name="molarity", palette="Dark2")+
  ylab("Pheromone deposited to the feeder")+
  scale_x_discrete(limits=c(1,2,3,4,5,6,7,8))+
  ylim(0,20)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_blank(),
        axis.title.y = element_blank(),
        plot.title = element_text(size=18),
        legend.position="none")+
  geom_jitter(width = 0.2,height=0)+
  geom_smooth()

Back to the nest

mpExp2<-glmer(pherbk~visit*mol+(1|colony/antID),data=riskirr,family="poisson", 
              glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
100000)))
simres<-simulateResiduals(mpExp2) #standard seed for random values is 123
plot(simres, asFactor=T)
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the model is zero inflated. let’s remodel

mpExp2 <- zeroinfl(pherbk ~ visit*mol + 1 | colony/antID, data = riskirr)
## Error in optim(fn = loglikfun, gr = gradfun, par = c(start$count, 
start$zero, : valore non finito fornito da optim
does not work. I will remove colony from random effect.

mpExp2 <- zeroinfl(pherbk ~ visit*mol + 1 | antID, data = riskirr)

Anova(mpExp2)
## Analysis of Deviance Table (Type II tests)
## 
## Response: pherbk
##           Df   Chisq Pr(>Chisq)    
## visit      1  10.249   0.001368 ** 
## mol        2 133.424  < 2.2e-16 ***
## visit:mol  2  11.339   0.003449 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
meanobj<-emmeans(mpExp2,~visit*mol,type="response")
contrast(meanobj,list(mol0.1vs0.55=c(1,-1,0),
                      mol0.1vs1.5=c(1,0,-1),
                      mol0.55vs1.5=c(0,1,-1),
                      SafeVsRisky=c(-0.5,1,-0.5)),
         adjust="bonferroni")
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##  contrast     estimate    SE  df z.ratio p.value
##  mol0.1vs0.55   -2.684 0.170 Inf -15.742 <.0001 
##  mol0.1vs1.5    -3.474 0.204 Inf -17.000 <.0001 
##  mol0.55vs1.5   -0.790 0.191 Inf  -4.144 0.0001 
##  SafeVsRisky     0.947 0.149 Inf   6.341 <.0001 
## 
## Results are averaged over the levels of: antID 
## P value adjustment: bonferroni method for 4 tests
phb2<-ggplot(riskirrp,aes(x=visit,y=pherbk, color=mol ))+
  labs(title = "E")+
  scale_color_brewer(name="molarity", palette="Dark2")+
  ylab("Pheromone deposited back to the nest")+
  scale_x_discrete(limits=c(1,2,3,4,5,6,7,8))+
  ylim(0,20)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_text(size=14),
        axis.title.y = element_blank(),
        plot.title = element_text(size=18),
        legend.position="bottom")+
  geom_jitter(width = 0.2,height=0)+
  geom_smooth()

Cond3

To the drop

riskgeo$visit<-as.numeric(riskgeo$visit)

mpExp3<-glmer(phergo~visit*mol+(1|colony/antID),data=riskgeo,family="poisson", 
glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
simres<-simulateResiduals(mpExp3) #standard seed for random values is 123
plot(simres, asFactor=T)
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Anova(mpExp3)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: phergo
##             Chisq Df Pr(>Chisq)    
## visit      0.2874  1  0.5918885    
## mol       16.1336  2  0.0003138 ***
## visit:mol  3.7139  2  0.1561452    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
meanobj<-emmeans(mpExp3,~visit*mol,type="response")
contrast(meanobj,list(mol0.1vs0.3=c(1,-1,0),
                      mol0.1vs0.9=c(1,0,-1),
                      mol0.3vs0.9=c(0,1,-1),
                      SafeVsRisky=c(-0.5,1,-0.5)),
         adjust="bonferroni")
##  contrast     ratio    SE  df z.ratio p.value
##  mol0.1vs0.3  0.477 0.174 Inf -2.032  0.1687 
##  mol0.1vs0.9  4.981 3.453 Inf  2.317  0.0821 
##  mol0.3vs0.9 10.444 6.501 Inf  3.769  0.0007 
##  SafeVsRisky  4.679 1.751 Inf  4.124  0.0001 
## 
## P value adjustment: bonferroni method for 4 tests 
## Tests are performed on the log scale
riskgeop<-subset(riskgeo,riskgeo$visit<9) #just remove tests
riskgeop <- droplevels(riskgeop)
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phg3<-ggplot(riskgeop,aes(x=visit,y=phergo, color=mol))+
  labs(title = "C")+
  scale_color_brewer(name="molarity", palette="Dark2")+
  ylab("Pheromone deposited to the feeder")+
  scale_x_discrete(limits=c(1,2,3,4,5,6,7,8))+
  ylim(0,20)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_blank(),
        axis.title.y = element_blank(),
        plot.title = element_text(size=18),
        legend.position="none")+
  geom_jitter(width = 0.2,height=0)+
  geom_smooth()

Back to the nest

mpExp3<-glmer(pherbk~visit*mol+(1|colony/antID),data=riskgeo,family="poisson",
              glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
100000)))
simres<-simulateResiduals(mpExp3) #standard seed for random values is 123
plot(simres, asFactor=T)

the model is zero inflated. let’s remodel

mpExp3 <- zeroinfl(pherbk ~ visit*mol + 1 | colony/antID, data = riskgeo)
## Error in optim(fn = loglikfun, gr = gradfun, par = c(start$count, 
start$zero, : valore non finito fornito da optim
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does not work. I will remove colony from random effect.

mpExp3 <- zeroinfl(pherbk ~ visit*mol + 1 |antID, data = riskgeo)

Anova(mpExp3)
## Analysis of Deviance Table (Type II tests)
## 
## Response: pherbk
##           Df   Chisq Pr(>Chisq)    
## visit      1  0.3297     0.5658    
## mol        2 47.0827  5.972e-11 ***
## visit:mol  2  0.8738     0.6460    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
meanobj<-emmeans(mpExp3,~visit*mol,type="response")
contrast(meanobj,list(mol0.1vs0.3=c(1,-1,0),
                      mol0.1vs0.9=c(1,0,-1),
                      mol0.3vs0.9=c(0,1,-1),
                      SafeVsRisky=c(-0.5,1,-0.5)),
         adjust="bonferroni")
##  contrast    estimate    SE  df z.ratio p.value
##  mol0.1vs0.3   -0.882 0.144 Inf -6.144  <.0001 
##  mol0.1vs0.9   -1.479 0.181 Inf -8.193  <.0001 
##  mol0.3vs0.9   -0.597 0.165 Inf -3.615  0.0012 
##  SafeVsRisky    0.142 0.126 Inf  1.134  1.0000 
## 
## Results are averaged over the levels of: antID 
## P value adjustment: bonferroni method for 4 tests
phb3<-ggplot(riskgeop,aes(x=visit,y=pherbk, color=mol))+
  labs(title = "F")+
  scale_color_brewer(name="molarity", palette="Dark2")+
  ylab("Pheromone deposited back to the nest")+
  scale_x_discrete(limits=c(1,2,3,4,5,6,7,8))+
  ylim(0,20)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_text(size=14),
        axis.title.y = element_blank(),
        plot.title = element_text(size=18),
        legend.position="bottom")+
  geom_jitter(width = 0.2,height=0)+
  geom_smooth(method="loess")

graph together

now I will plot the pheromone deposition all together for the three experiments

# Multiple plot function
#
# from: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/
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#
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot 
objects)
# - cols:   Number of columns in layout
# - layout: A matrix specifying the layout. If present, 'cols' is ignored.
#
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# then plot 1 will go in the upper left, 2 will go in the upper right, and
# 3 will go all the way across the bottom.
#
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
  library(grid)

  # Make a list from the ... arguments and plotlist
  plots <- c(list(...), plotlist)

  numPlots = length(plots)

  # If layout is NULL, then use 'cols' to determine layout
  if (is.null(layout)) {
    # Make the panel
    # ncol: Number of columns of plots
    # nrow: Number of rows needed, calculated from # of cols
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
                    ncol = cols, nrow = ceiling(numPlots/cols))
  }

 if (numPlots==1) {
    print(plots[[1]])

  } else {
    # Set up the page
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))

    # Make each plot, in the correct location
    for (i in 1:numPlots) {
      # Get the i,j matrix positions of the regions that contain this subplot
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))

      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
                                      layout.pos.col = matchidx$col))
    }
  }
}

multiplot(phg1,phb1,phg2,phb2,phg3,phb3,cols=3)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 64 rows containing non-finite values (stat_smooth).
## Warning: Removed 64 rows containing missing values (geom_point).
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
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## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 14 rows containing missing values (geom_smooth).
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 69 rows containing non-finite values (stat_smooth).
## Warning: Removed 69 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_smooth).
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 18 rows containing non-finite values (stat_smooth).
## Warning: Removed 18 rows containing missing values (geom_point).
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 43 rows containing non-finite values (stat_smooth).
## Warning: Removed 43 rows containing missing values (geom_point).
## Warning: Removed 29 rows containing missing values (geom_smooth).
## Warning: Removed 5 rows containing non-finite values (stat_smooth).
## Warning: Removed 5 rows containing missing values (geom_point).
## Warning: Removed 16 rows containing missing values (geom_smooth).

Supplemental pilot experiment

Ant perception of 0.1,0.3,0.9

m0<-glmer(value~contrast*Visitnumber+(1|
AntID),data=ctrlmelted,family="binomial",
          glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000000)))
Anova(m0)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 

147



APPENDICES

## Response: value
##                       Chisq Df Pr(>Chisq)  
## contrast             3.5857  1    0.05828 .
## Visitnumber          1.4604  1    0.22686  
## contrast:Visitnumber 0.0242  1    0.87635  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
no difference between visits

m1<-glmer(value~contrast*variable+(1|Colony/
AntID),data=ctrlmelted,family="binomial",
          glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000000)))
## boundary (singular) fit: see ?isSingular
e<-emmeans(m1,~contrast*variable,type="response")
test(e,adjust="bonferroni")
##  contrast variable      prob     SE  df z.ratio p.value
##  0.1vs0.3 Firstchoice  0.860 0.0569 Inf 3.844   0.0005 
##  0.3vs0.9 Firstchoice  0.648 0.0953 Inf 1.461   0.5763 
##  0.1vs0.3 Secondchoice 0.870 0.0539 Inf 3.988   0.0003 
##  0.3vs0.9 Secondchoice 0.724 0.0850 Inf 2.264   0.0942 
## 
## P value adjustment: bonferroni method for 4 tests 
## Tests are performed on the logit scale

Discriminate three drops

m0<-glmer(value~Visitnumber+(1|Colony/AntID),data=melted,family="binomial",
          glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000000)))
Anova(m0)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: value
##              Chisq Df Pr(>Chisq)  
## Visitnumber 4.5959  1    0.03205 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
difference between visits

m1<-glmer(value~variable+(1|Colony/AntID),data=melted,family="binomial",
          glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000000)))
Anova(m1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: value
##           Chisq Df Pr(>Chisq)
## variable 0.1038  1     0.7473
no difference between first and last choice. I will just look at all the percentages together.

melted$Visitnumber<-as.factor(melted$Visitnumber)
m2<-glmer(value~variable*Visitnumber+(1|Colony/AntID),data=melted,family="binom
ial",
          glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000000)))
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## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, 
: Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
e<-emmeans(m2,~variable*Visitnumber,type="response")
e
##  variable     Visitnumber      prob         SE  df asymp.LCL asymp.UCL
##  Firstchoice  10          1.0000000 0.00000025 Inf 0.0000000 1.0000000
##  Secondchoice 10          1.0000000 0.00000048 Inf 0.0000000 1.0000000
##  Firstchoice  11          0.9580370 0.05009378 Inf 0.6650518 0.9962051
##  Secondchoice 11          0.9580370 0.05009390 Inf 0.6650502 0.9962052
##  Firstchoice  12          0.9580370 0.05009394 Inf 0.6650499 0.9962052
##  Secondchoice 12          0.9580370 0.05009397 Inf 0.6650495 0.9962052
##  Firstchoice  13          0.9580370 0.05009384 Inf 0.6650510 0.9962052
##  Secondchoice 13          0.9580370 0.05009396 Inf 0.6650496 0.9962052
##  Firstchoice  14          0.9074061 0.08321675 Inf 0.5844690 0.9855654
##  Secondchoice 14          0.8481657 0.11228549 Inf 0.5028421 0.9686049
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale
I   have   a   100%   probability   of   choosing   safe   for   the   first   trial,   the   percentage   decrease   with 

subsequent, but it remains very high.

fed on 1.5 risk in losses

Preliminary questions

first, I want to know if initial and final choice differ

fsdiff<-melt(risksa15, measure.vars = c("firstchoicesafe","endchoicesafe"))

mdiff<-glmer(value~variable+(1|colony/antID),data=fsdiff,family="binomial")
## boundary (singular) fit: see ?isSingular
Anova(mdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: value
##           Chisq Df Pr(>Chisq)
## variable 0.0952  1     0.7577
e<-emmeans(mdiff, ~variable, type="response")
pairs(e)
##  contrast                        odds.ratio    SE  df z.ratio p.value
##  firstchoicesafe / endchoicesafe        1.1 0.339 Inf 0.309   0.7577 
## 
## Tests are performed on the log odds ratio scale
there is no difference between primary and secondary choice, I will now on only use the primary for 

further analysis

now, I want to know if the visits differ from one another

149



APPENDICES

risksa15$visit<-as.numeric(risksa15$visit)
mvisdiff<-glmer(firstchoicesafe~visit+(1|colony/antID),data=risksa15,family="bi
nomial",
                glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
1000000000)))
## boundary (singular) fit: see ?isSingular
Anova(mvisdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: firstchoicesafe
##        Chisq Df Pr(>Chisq)  
## visit 4.6318  1    0.03139 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mvisdiff)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: firstchoicesafe ~ visit + (1 | colony/antID)
##    Data: risksa15
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
## 
##      AIC      BIC   logLik deviance df.resid 
##    193.9    206.9    -93.0    185.9      185 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4228  0.2194  0.2921  0.3888  0.8847 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  antID:colony (Intercept) 2.385    1.544   
##  colony       (Intercept) 0.000    0.000   
## Number of obs: 189, groups:  antID:colony, 63; colony, 4
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   7.5727     2.7825   2.722   0.0065 **
## visit        -0.5722     0.2659  -2.152   0.0314 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## visit -0.991
## convergence code: 0
## boundary (singular) fit: see ?isSingular
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the percentage of ants going for safe decreases with successive visits. this means that more and 

more ants after not finding the sugar drop start doing a random search. I will from now on only 

observe the first visit, being it a clearer indication of choice

modeling

now to the actual model. I drop antID because I kept only one observation for each ant

risksa15sing<-subset(risksa15,risksa15$visit==9)

mExp1<-glmer(firstchoicesafe~firstfeed*firstrisk+(1|
antID),data=risksa15sing,family="binomial",
             glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
1000000)))
## boundary (singular) fit: see ?isSingular
simres<-simulateResiduals(mExp1) #standard seed for random values is 123
plot(simres, asFactor=T)

model is good here. it says nearly unidentifiable. probably I have complete separation of one data 

point, like 100% prob for one group. let’s go on

Anova(mExp1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: firstchoicesafe
##                      Chisq Df Pr(>Chisq)
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## firstfeed           1.1779  1     0.2778
## firstrisk           0.9249  1     0.3362
## firstfeed:firstrisk 0.0010  1     0.9752
no effect of any of the factors, so I will redo the model without factors

mExp1<-glmer(firstchoicesafe~+(1|antID),data=risksa15sing,family="binomial",
             glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
1000000)))

simres<-simulateResiduals(mExp1) #standard seed for random values is 123
plot(simres, asFactor=T)

meanobj <- emmeans(mExp1,~1, type="response")
(test(meanobj))
##  1        prob    SE  df z.ratio p.value
##  overall 0.825 0.048 Inf 4.665   <.0001 
## 
## Tests are performed on the logit scale
ants prefer the safe 82%.
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Appendix 3 – Pilot experiment: colour discrimination learning in 
Lasius niger

Before we could test information integration in the main paper, we needed to test whether ants 

could learn to discriminate between two colours presented as background of the apparatus. In order 

to do this we designed a pilot experiment divided in a training phase and a test phase. We employed 

16 ants coming from two different colonies. Marking procedure was identical to the one described 

in the main paper. A schematic representation of the experiment is available in the figure.

In the training phase each ant was let on a straight, 10cm long runway. The runway was surrounded 

by a coloured wall, that could either be blue or yellow. At the end of the runway we placed either a 

drop of 1.0M sucrose solution (S+) or a drop of water (Sn). For each ant, the association between 

reward and wall colour was constant (e.g. blue walls always predicted sucrose solution, yellow 

walls always water). We repeated the procedure for a total of 8 training visits.
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To test the learned association, after the 8 training visits we let the ant onto a Y-maze. The walls 

around the stem of the maze had now two colours, blue on the left side and yellow on the right, 

while the walls around the left and right arm were now respectively completely blue and yellow 

(colour side was balanced between ants). If the ants had learned the colour-reward association we 

expected them to choose the arm with wall colour consistent with the rewarded one in the training 

phase.

81% (13/16) ants chose the correct arm as their first choice, a percentage significantly higher than 

chance level  (GLMM post-hoc with estimated means, probability=0.8125, SE=0.098, z=2.289, 

p=0.022). For the complete analysis see Appendix 4.
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Appendix 4 – Data analysis for the study: Multi-modal cues 
integration in the black garden ant

Setup

first I load packages

library(lme4)
## Loading required package: Matrix
library(DHARMa)
library(car)
## Loading required package: carData
library(emmeans)
library(reshape2)
library(ggplot2)
library(knitr)
library(pscl)
## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis
set.seed(123)#set seed for replicability in random simulations

Cond 1

Primary Choice

Preliminary questions

first, I want to know if primary and secondary choice differ I will ceck for both testing and training 

phases

fsdiff<-melt(EpisodicMemory, measure.vars = c("Firstbin","Lastbin"))

mdiff<-glmer(value~variable*VisitType+(1|Colony/antID),data=fsdiff,family="bino
mial", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 1000000000)))
## boundary (singular) fit: see ?isSingular
Anova(mdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: value
##                      Chisq Df Pr(>Chisq)    
## variable            0.1761  1     0.6747    
## VisitType          44.5179  1   2.52e-11 ***
## variable:VisitType  0.3732  1     0.5413    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e<-emmeans(mdiff, ~variable*VisitType, type="response")
pairs(e,simple="variable")
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## VisitType = test:
##  contrast           odds.ratio    SE  df z.ratio p.value
##  Firstbin / Lastbin      1.227 0.347 Inf  0.725  0.4686 
## 
## VisitType = train:
##  contrast           odds.ratio    SE  df z.ratio p.value
##  Firstbin / Lastbin      0.955 0.285 Inf -0.155  0.8768 
## 
## Tests are performed on the log odds ratio scale
I find of course a difference between testing and training in the number of correct choices. I do not 

care about this for the moment, is the subsequent analysis. What is important is that for both 

training and testing primary and secondary choice do not differ. from now on I will use only 

primary choice.

now, I want to know if the visits differ from one another. here I will test separated testing and 

training. I could do a full model, but there is no reason to put everthing together here, it is just more 

complicated. Anyway I am sure that I will see an increase in correct choice for the training phase, as 

is of course expected. The one I am really interested in are the testing phase choices.

train<-subset(EpisodicMemory,EpisodicMemory$VisitType=="train")

mvisdiff<-glmer(Firstbin~VisitNumber+(1|Colony/antID),data=train,family="binomi
al", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 1000000000)))
## boundary (singular) fit: see ?isSingular
Anova(mvisdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: Firstbin
##              Chisq Df Pr(>Chisq)    
## VisitNumber 18.452  1  1.743e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mvisdiff)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Firstbin ~ VisitNumber + (1 | Colony/antID)
##    Data: train
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
## 
##      AIC      BIC   logLik deviance df.resid 
##    154.3    169.6    -73.2    146.3      333 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3282  0.0677  0.1414  0.2733  1.2871 
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## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  antID:Colony (Intercept) 0.9787   0.9893  
##  Colony       (Intercept) 0.0000   0.0000  
## Number of obs: 337, groups:  antID:Colony, 31; Colony, 4
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.1844     0.5325   0.346    0.729    
## VisitNumber   0.4907     0.1142   4.296 1.74e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## VisitNumber -0.771
## convergence code: 0
## boundary (singular) fit: see ?isSingular
As I expected, correct choices increase over time. 

test<-subset(EpisodicMemory,EpisodicMemory$VisitType=="test")

mvisdiff<-glmer(Firstbin~scale(VisitNumber)+(1|Colony/antID),data=test,family="
binomial", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 
1000000000)))
## boundary (singular) fit: see ?isSingular
Anova(mvisdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: Firstbin
##                     Chisq Df Pr(>Chisq)   
## scale(VisitNumber) 6.7707  1   0.009267 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mvisdiff)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Firstbin ~ scale(VisitNumber) + (1 | Colony/antID)
##    Data: test
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
## 
##      AIC      BIC   logLik deviance df.resid 
##    146.0    158.3    -69.0    138.0      155 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9304  0.1208  0.1981  0.3248  1.5876 
## 
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## Random effects:
##  Groups       Name        Variance  Std.Dev. 
##  antID:Colony (Intercept) 3.948e+00 1.987e+00
##  Colony       (Intercept) 8.236e-15 9.075e-08
## Number of obs: 159, groups:  antID:Colony, 32; Colony, 4
## 
## Fixed effects:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          2.3248     0.6011   3.867  0.00011 ***
## scale(VisitNumber)  -0.7018     0.2697  -2.602  0.00927 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## scl(VstNmb) -0.281
## convergence code: 0
## boundary (singular) fit: see ?isSingular
I observe that the number of correct choices decreased over subsequent trials. This is probably due 

to the fact that over time more and more ants revert to random search, not finding food at the end of 

the chosen pole. From now on I will only keep first choice.

modeling

First of all want to see how many training trials the ants need to learn odour-reward association. I 

will have trial number as a factor in this case, because I am interested in every trial against chance 

level. This is because I want to know which is the earlyest trial in which the ants ants have learned.

train$VisitNumber<-as.factor(train$VisitNumber)

mExptrain<-glmer(Firstbin~VisitNumber+(1|Colony/antID),data=train,family="binom
ial", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 1000000)))
## boundary (singular) fit: see ?isSingular
not converging. I will drop colony from random effects

mExptrain<-glmer(Firstbin~VisitNumber+(1|antID),data=train,family="binomial", 
glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 1000000)))
Anova(mExptrain)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: Firstbin
##              Chisq Df Pr(>Chisq)  
## VisitNumber 19.668 10    0.03255 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
there is indeed a difference between visits. let’s test each one against chance
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meanobj <- emmeans(mExptrain,~VisitNumber, type="response")
(test(meanobj, adjust="bonferroni"))
##  VisitNumber      prob         SE  df z.ratio p.value
##  2           0.6839396 0.10256300 Inf 1.627   1.0000 
##  3           0.8309868 0.07673042 Inf 2.915   0.0391 
##  4           0.9767330 0.02466426 Inf 3.443   0.0063 
##  5           0.9513316 0.03763521 Inf 3.657   0.0028 
##  6           0.9596376 0.03345344 Inf 3.669   0.0027 
##  7           1.0000000 0.00000040 Inf 0.119   1.0000 
##  8           0.9596376 0.03345358 Inf 3.669   0.0027 
##  9           0.9812597 0.02106635 Inf 3.455   0.0061 
##  10          0.9812596 0.02106652 Inf 3.455   0.0061 
##  11          1.0000000 0.00000044 Inf 0.105   1.0000 
##  12          1.0000000 0.00000043 Inf 0.106   1.0000 
## 
## P value adjustment: bonferroni method for 11 tests 
## Tests are performed on the logit scale
In the second trial already 68% of the ants choose correct. this is however not significant. At the 

third trial 83% choose correct and the level is maintained high trough all the experiment. In some 

trials the percentage of correct is even 100%.

toplot1<-as.data.frame(meanobj) #I am just saving this for future plot
now to the actual model. I drop antID because I kept only one observation for each ant

sing<-subset(EpisodicMemory,EpisodicMemory$VisitNumber==13)

mExp<-glmer(Firstbin~VisitColor*CorrectSide*CorrectSmell+(1|
Colony),data=sing,family="binomial", glmerControl(optimizer="bobyqa", optCtrl = 
list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
too many factors to use in the random model. I will try removing random effect just to see if there is 

any important effect to consider.

mExp<-
glm(Firstbin~VisitColor*CorrectSide*CorrectSmell,data=sing,family="binomial")
simres<-simulateResiduals(mExp) #standard seed for random values is 123
plot(simres, asFactor=T)
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model is good here

Anova(mExp)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Analysis of Deviance Table (Type II tests)
## 
## Response: Firstbin
##                                     LR Chisq Df Pr(>Chisq)  
## VisitColor                            0.0000  1    1.00000  
## CorrectSide                           1.3814  1    0.23986  
## CorrectSmell                          6.5115  1    0.01072 *
## VisitColor:CorrectSide                2.0708  1    0.15014  
## VisitColor:CorrectSmell               0.0000  1    0.99997  
## CorrectSide:CorrectSmell              0.0000  1    0.99995  
## VisitColor:CorrectSide:CorrectSmell   0.0000  1    0.99989  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
no differences between colors or sides. I find a difference between the correct smells. Will redo the 

model inserting again the random effect.

mExp<-glmer(Firstbin~CorrectSmell+(1|Colony),data=sing,family="binomial", 
glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
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model is not working again. Hessian is numerically singular. this means that for one of the two 

scents I either have 100% correct or 0%correct.

Let’s look at the data.

tapply(sing$Firstbin,sing$CorrectSmell,mean)
##    lemon rosemary 
##     0.75     1.00
here is the problem. 100% of ants were correct with rosemary, 75% with lemon. now we have 

observed this difference, which however does not seem so crucial having just 16 subjects per smell. 

I will just do the model as a whole and test the overall performance against chance level.

mExp<-glmer(Firstbin~(1|Colony),data=sing,family="binomial", 
glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
simres<-simulateResiduals(mExp) #standard seed for random values is 123
plot(simres, asFactor=T)

meanobj <- emmeans(mExp,~1, type="response")
toplot2<-as.data.frame(meanobj) #again as before, saving for plot
kable(test(meanobj))
87% of ants choose accordingly to background color*side when scent information is not available 

anymore.
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Plotting

I want to plot probability of correct choice both for training and for testing

toplot <-data.frame(Visit=c(seq(2,12),"Test"),
                    group=c(rep("train",11),"test"),
                    prob=c(toplot1$prob,toplot2$prob),
                    SE=c(toplot1$SE,toplot2$SE))
toplot$Visit = factor(toplot$Visit, 
levels=c("2","3","4","5","6","7","8","9","10","11","12","Test"))
ggplot(toplot,aes(x=Visit,y=prob,group=group))+
  geom_point(size=c(rep(2,11),3))+
  geom_line()+
  geom_errorbar(aes(ymin=prob-
SE,ymax=prob+SE),width=0.2,size=c(rep(0.8,11),1.5))+
  geom_hline(yintercept=0.5,linetype="dotted",color="red")+
  scale_y_continuous(breaks=seq(0.3,1.1,0.1))+
  ylab("probability of choosing correct")+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black",face=c(rep(1,11),2)),
        axis.text.y = 
element_text(size=12,colour=c("red","black","black","black","black","black")),
        axis.title.x = element_text(size=14),
        axis.title.y = element_text(size=14),
        plot.title = element_text(size=18))

Pheromone deposition

I will look at the pheromone deposited on the way to the drop and back to the nest across visits.
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To the drop

mpExp<-glmer(pherGo~scale(VisitNumber)+(1|Colony/
antID),data=EpisodicMemory,family="poisson", glmerControl(optimizer="bobyqa", 
optCtrl = list(maxfun = 100000)))
simres<-simulateResiduals(mpExp) #standard seed for random values is 123
plot(simres, asFactor=T)

the model is fine

Anova(mpExp)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: pherGo
##                     Chisq Df Pr(>Chisq)    
## scale(VisitNumber) 32.222  1  1.375e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mpExp)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: pherGo ~ scale(VisitNumber) + (1 | Colony/antID)
##    Data: EpisodicMemory
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1424.0   1439.2   -708.0   1416.0      322 
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## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9952 -0.7407 -0.0352  0.6314  3.4016 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  antID:Colony (Intercept) 0.25985  0.5098  
##  Colony       (Intercept) 0.05697  0.2387  
## Number of obs: 326, groups:  antID:Colony, 31; Colony, 4
## 
## Fixed effects:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         1.31446    0.15475   8.494  < 2e-16 ***
## scale(VisitNumber)  0.24849    0.04378   5.676 1.38e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## scl(VstNmb) 0.086
train$VisitNumber<-as.numeric(train$VisitNumber)

phg1<-ggplot(train,aes(x=VisitNumber,y=pherGo))+
  labs(title = "A")+
  ylab("Pheromone deposited to the drop")+
  scale_x_discrete(limits=c(1,2,3,4,5,6,7,8,9,10,11,12))+
  ylim(0,15)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_text(size=14),
        axis.title.y = element_text(size=14),
        plot.title = element_text(size=18),
        legend.position="none")+
  geom_jitter(width = 0.2,height=0)+
  geom_smooth()

there is a general increase of pheromone deposited towards the drop across visits. this has to be 

expected, given the fact that ants learn the associations ad so are more able to predict the presence 

of a drop.

Back to the nest

mpExp<-glmer(pherBk~scale(VisitNumber)+(1|Colony/
antID),data=EpisodicMemory,family="poisson", glmerControl(optimizer="bobyqa", 
optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
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simres<-simulateResiduals(mpExp) #standard seed for random values is 123
plot(simres, asFactor=T)

the model is fine

Anova(mpExp)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: pherBk
##                    Chisq Df Pr(>Chisq)   
## scale(VisitNumber) 10.54  1   0.001168 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mpExp)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: pherBk ~ scale(VisitNumber) + (1 | Colony/antID)
##    Data: EpisodicMemory
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##   1382.6   1397.6   -687.3   1374.6      309 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.32143 -0.73026 -0.04768  0.62410  2.90110 
## 
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## Random effects:
##  Groups       Name        Variance Std.Dev.
##  antID:Colony (Intercept) 0.2033   0.4509  
##  Colony       (Intercept) 0.0000   0.0000  
## Number of obs: 313, groups:  antID:Colony, 31; Colony, 4
## 
## Fixed effects:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         1.24118    0.08977  13.826  < 2e-16 ***
## scale(VisitNumber) -0.13216    0.04071  -3.247  0.00117 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## scl(VstNmb) 0.235 
## convergence code: 0
## boundary (singular) fit: see ?isSingular
phb1<-ggplot(train,aes(x=VisitNumber,y=pherBk))+
  labs(title = "B")+
  ylab("Pheromone deposited back to the nest")+
  scale_x_discrete(limits=c(1,2,3,4,5,6,7,8,9,10,11,12))+
  ylim(0,15)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_text(size=14),
        axis.title.y = element_text(size=14),
        plot.title = element_text(size=18),
        legend.position="bottom")+
  geom_jitter(width = 0.2,height=0)+
  geom_smooth()
on the countrary, here I observe a general decrease in pheromone deposited back to the nest. This is 

probably due to a general habituation of the ants, that after having deposited much pheromone in 

subsequent vists decrease the general deposition.

I will plot the two together.

graph together

library(cowplot)
## 
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggplot2':
## 
##     ggsave
plot_grid(phg1, phb1, nrow=1)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 58 rows containing non-finite values (stat_smooth).
## Warning: Removed 58 rows containing missing values (geom_point).
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## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 71 rows containing non-finite values (stat_smooth).
## Warning: Removed 71 rows containing missing values (geom_point).

Cond 2

Primary Choice

Preliminary questions

first, I want to know if primary and secondary choice differ I will ceck for both testing and training 

phases

EpisodicMemoryPretraining<-read.csv("EpisodicMemoryPretraining.csv")
fsdiff<-melt(EpisodicMemoryPretraining, measure.vars = c("Firstbin","Lastbin"))

mdiff<-glmer(value~variable*VisitType+(1|Colony/antID),data=fsdiff,family="bino
mial", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 1000000000)))
## boundary (singular) fit: see ?isSingular
Anova(mdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: value
##                      Chisq Df Pr(>Chisq)    
## variable            0.1208  1     0.7282    
## VisitType          25.1271  1  5.367e-07 ***
## variable:VisitType  0.0012  1     0.9718    
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## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e<-emmeans(mdiff, ~variable*VisitType, type="response")
pairs(e,simple="variable")
## VisitType = test:
##  contrast           odds.ratio       SE  df z.ratio p.value
##  Firstbin / Lastbin       1.13 3.93e-01 Inf  0.348  0.7282 
## 
## VisitType = Ytrain:
##  contrast           odds.ratio       SE  df z.ratio p.value
##  Firstbin / Lastbin       0.00 8.20e-06 Inf -0.035  0.9720 
## 
## Tests are performed on the log odds ratio scale
I find again a difference between testing and training in the number of correct choices. As before I 

ignore it.no difference between primary and secondary choice. from now on I will use only primary 

choice.

now, I want to know if the visits differ from one another I test separated testing and training. Be 

aware that this time training does not contain all the visits, but just 7 and 8, as only those two are Y 

mazes

train<-
subset(EpisodicMemoryPretraining,EpisodicMemoryPretraining$VisitType=="Ytrain")

mvisdiff<-glmer(Firstbin~VisitNumber+(1|Colony/antID),data=train,family="binomi
al", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 1000000000)))
## boundary (singular) fit: see ?isSingular
Anova(mvisdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: Firstbin
##             Chisq Df Pr(>Chisq)
## VisitNumber     0  1          1
Absolutely no difference between visit 7 and 8. either they did not learned at all, or they learned and 

is very solid and stable. Will see in next analysis block.

test<-
subset(EpisodicMemoryPretraining,EpisodicMemoryPretraining$VisitType=="test")

mvisdiff<-glmer(Firstbin~VisitNumber+(1|Colony/antID),data=test,family="binomia
l", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 1000000000)))
## boundary (singular) fit: see ?isSingular
Anova(mvisdiff)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: Firstbin
##              Chisq Df Pr(>Chisq)
## VisitNumber 0.0126  1     0.9106
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Here i see no change across visits. this is a bit strange, because i should see a decrease in percentage 

if the ants have learned, given the fact that there is no reward provided. This may suggest a random 

choice, or on the other hand a very robust choice. I will still keep only first trial for consistency with 

the other experiment.

modeling

First, 2 Y maze training trials to assess if the ants have learned smell-food association

train$VisitNumber<-as.factor(train$VisitNumber)

mExptrain<-glmer(Firstbin~VisitNumber+(1|Colony/antID),data=train,family="binom
ial", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
meanobj <- emmeans(mExptrain,~VisitNumber, type="response")
toplot1<-as.data.frame(meanobj)
(test(meanobj, adjust="bonferroni"))
##  VisitNumber  prob     SE  df z.ratio p.value
##  7           0.969 0.0308 Inf 3.380   0.0015 
##  8           0.969 0.0308 Inf 3.380   0.0015 
## 
## P value adjustment: bonferroni method for 2 tests 
## Tests are performed on the logit scale
in both trials 96% of ants choose the correct smell. they clearly have learned

now to the model for testing. I drop antID because I kept only one observation for each ant

sing<-
subset(EpisodicMemoryPretraining,EpisodicMemoryPretraining$VisitNumber==9)

mExp<-glmer(Firstbin~VisitColor*CorrectSide*CorrectSmell+(1|
Colony),data=sing,family="binomial", glmerControl(optimizer="bobyqa", optCtrl = 
list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
too many factors to use in the random model. I will try removing random effect just to see if there is 

any important effect to consider.

mExp<-
glm(Firstbin~VisitColor*CorrectSide*CorrectSmell,data=sing,family="binomial")
simres<-simulateResiduals(mExp) #standard seed for random values is 123
plot(simres, asFactor=T)
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model is good here

Anova(mExp)
## Analysis of Deviance Table (Type II tests)
## 
## Response: Firstbin
##                                     LR Chisq Df Pr(>Chisq)  
## VisitColor                            0.3571  1     0.5501  
## CorrectSide                           4.2917  1     0.0383 *
## CorrectSmell                          1.6404  1     0.2003  
## VisitColor:CorrectSide                0.0646  1     0.7993  
## VisitColor:CorrectSmell               1.9750  1     0.1599  
## CorrectSide:CorrectSmell              2.4969  1     0.1141  
## VisitColor:CorrectSide:CorrectSmell   0.0000  1     1.0000  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
I see an effect of side. put it back in the model.

mExp<-glmer(Firstbin~CorrectSide+(1|Colony),data=sing,family="binomial", 
glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
simres<-simulateResiduals(mExp) #standard seed for random values is 123
plot(simres, asFactor=T)
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meanobj <- emmeans(mExp,~CorrectSide, type="response")
(test(meanobj,adjust="bonferroni"))
##  CorrectSide  prob    SE  df z.ratio p.value
##  left        0.814 0.101 Inf 2.220   0.0529 
##  right       0.500 0.127 Inf 0.000   1.0000 
## 
## P value adjustment: bonferroni method for 2 tests 
## Tests are performed on the logit scale
when the correct is on the left they slightly do more correct choices (n.s.). when is on the right they 

go completly random. This has to be expected, because ants have a bias towards left side, that they 

follow when they have no other reliable information (e.g. memory). ants have not learned the task. 

Will do general probability that I will write in the main paper, as it is the main result.

mExp<-glmer(Firstbin~1|Colony,data=sing,family="binomial", 
glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
meanobj <- emmeans(mExp,~1, type="response")
toplot2<-as.data.frame(meanobj)
(test(meanobj))
##  1        prob    SE  df z.ratio p.value
##  overall 0.656 0.084 Inf 1.737   0.0823 
## 
## Tests are performed on the logit scale

65% of ants choose correclty
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Plotting

I want to plot probability of correct choice both for training and for testing

toplot <-data.frame(Visit=c(7,8,"Test"),
                    group=c("train","train","test"),
                    prob=c(toplot1$prob,toplot2$prob),
                    SE=c(toplot1$SE,toplot2$SE))
toplot$Visit = factor(toplot$Visit, levels=c("7","8","Test"))
ggplot(toplot,aes(x=Visit,y=prob,group=group))+
  geom_point(size=c(2,2,3))+
  geom_line()+
  geom_errorbar(aes(ymin=prob-SE,ymax=prob+SE),width=0.2,size=c(0.8,0.8,1.5))+
  geom_hline(yintercept=0.5,linetype="dotted",color="red")+
  scale_y_continuous(breaks=seq(0.3,1.1,0.1))+
  ylab("probability of choosing correct")+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black",face=c(1,1,2)),
        axis.text.y = 
element_text(size=12,colour=c("red","black","black","black","black","black")),
        axis.title.x = element_text(size=14),
        axis.title.y = element_text(size=14),
        plot.title = element_text(size=18))

Pheromone deposition

I will look at the pheromone deposited on the way to the drop and back to the nest. I am now adding 

visit value (sugar or water), given the fact that now visits alternate in quality. will remove visits 7 
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and 8 from the analysis because are different. Being only 6 visits, I have only 3 and 2 visits for each 

value: not enough to see change across visits. I will merge the 2/3 visits per value together.

To the drop

strain<-
subset(EpisodicMemoryPretraining,EpisodicMemoryPretraining$VisitType=="Strain")

mpExp<-glmer(pherGo~VisitValue+(1|Colony/antID),data=strain,family="poisson", 
glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
simres<-simulateResiduals(mpExp) #standard seed for random values is 123
plot(simres, asFactor=T)

the model is fine

Anova(mpExp)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: pherGo
##             Chisq Df Pr(>Chisq)    
## VisitValue 15.618  1   7.75e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mpExp)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
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## Formula: pherGo ~ VisitValue + (1 | Colony/antID)
##    Data: strain
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##    196.3    208.4    -94.1    188.3      148 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9131 -0.3089 -0.1904 -0.1603  2.9279 
## 
## Random effects:
##  Groups       Name        Variance  Std.Dev. 
##  antID:Colony (Intercept) 3.195e+00 1.788e+00
##  Colony       (Intercept) 2.351e-14 1.533e-07
## Number of obs: 152, groups:  antID:Colony, 35; Colony, 4
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -1.9677     0.5417  -3.633 0.000281 ***
## VisitValuewater  -1.0014     0.2534  -3.952 7.75e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## VisitValwtr -0.196
## convergence code: 0
## boundary (singular) fit: see ?isSingular
meanobj <- emmeans(mpExp,~VisitValue, type="response")
(pairs(meanobj))
##  contrast      ratio   SE  df z.ratio p.value
##  sugar / water  2.72 0.69 Inf 3.952   0.0001 
## 
## Tests are performed on the log scale
as expected, ants deposit more pheromone for the sugar over the water.

phg2<-ggplot(strain,aes(x=VisitValue,y=pherGo))+
  labs(title = "A")+
  ylab("Pheromone deposited to the drop")+
    xlab("Visit value")+
  ylim(0,8)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_text(size=14),
        axis.title.y = element_text(size=14),
        plot.title = element_text(size=18),
        legend.position="none")+
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  geom_violin()+
  geom_jitter(width = 0.2,height=0)

Back to the nest

mpExp<-glmer(pherBk~VisitValue+(1|Colony/antID),data=strain,family="poisson", 
glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## boundary (singular) fit: see ?isSingular
mpExp<-glmer(pherBk~VisitValue+(1|antID),data=strain,family="poisson", 
glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge: degenerate Hessian with 1 negative
## eigenvalues
mpExp<-glm(pherBk~VisitValue,data=strain,family="poisson")
simres<-simulateResiduals(mpExp) #standard seed for random values is 123
plot(simres, asFactor=T)

the model is zero inflated. maybe that is why it did not converge

mpExp<- zeroinfl(pherBk ~ VisitValue + 1 | Colony/antID, data = strain)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Error in solve.default(as.matrix(fit$hessian)): Lapack routine dgesv: system 
is exactly singular: U[34,34] = 0
again do not converge. dropping colony as random factor

mpExp<- zeroinfl(pherBk ~ VisitValue + 1 | antID, data = strain)
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## Error in solve.default(as.matrix(fit$hessian)): il sistema è numericamente 
singolare: valore di condizione di reciprocità = 1.43037e-18
again. dropping random effect at all.

mpExp<- zeroinfl(pherBk ~ VisitValue , data = strain)
## Error in solve.default(as.matrix(fit$hessian)): il sistema è numericamente 
singolare: valore di condizione di reciprocità = 1.03101e-23
there seems to be no solution here. We do have a suspect: maybe there are all zeros in one of the 

groups. let’s look at the raw data.

tapply(strain$pherBk,strain$VisitValue,summary)
## $sugar
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   0.000   0.000   2.000   2.353   4.000   8.000      28 
## 
## $water
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0
here is the reason. No ant deposited any pheromone on the way back from water in ANY visit. 

Statistical models cannot grasp complete separation of data. We are confident in saying that ants 

deposited more pheromone for sugar than for water, even without having a p-value backing it up

phb2<-ggplot(strain,aes(x=VisitValue,y=pherBk))+
  labs(title = "B")+
  ylab("Pheromone deposited back to the nest")+
  xlab("Visit value")+
  ylim(0,8)+
  theme_light()+
  theme(axis.text.x = element_text(size=12,colour="black"),
        axis.text.y = element_text(size=12,colour="black"),
        axis.title.x = element_text(size=14),
        axis.title.y = element_text(size=14),
        plot.title = element_text(size=18),
        legend.position="none")+
  geom_violin()+
  geom_jitter(width = 0.2,height=0)
I will plot the two together.

Graph together

plot_grid(phg2, phb2, nrow=1) #could also label them here with 
labels=c("A","B")
## Warning: Removed 41 rows containing non-finite values (stat_ydensity).
## Warning: Removed 41 rows containing missing values (geom_point).
## Warning: Removed 28 rows containing non-finite values (stat_ydensity).
## Warning: Removed 28 rows containing missing values (geom_point).

176



Appendix 4 – Data analysis for the study: Multi-modal cues integration in the black garden ant

177



APPENDICES

Appendix 5 – Data Analysis of study: Visual discrimination learning and 
amodal completion in the jumping spider Phidippus regius

This supplement provides the entire R script and output of the statistical analysis we performed and 

figures produced, in their original form. It is presented in the spirit of open and transparent science, 

but has not been carefully curated.

Setup

Load packages

library(readODS)
library(knitr)
library(lme4)
library(car)
library(emmeans)
library(DHARMa)
library(pscl)
library(ggplot2)
library(ggsignif)
library(MASS)

Analysis

Preliminary analysis: number of answered tests

A total of

nrow(data)/2
## [1] 802
trials have been recorded. They are divided into the three conditions according to the following list:

summary(data$cond)[1]/2
## Extinct 
##     131
summary(data$cond)[2]/2
## Illusion 
##      133
summary(data$cond)[3]/2
## Reward 
##    538
However, in not all the trials the spiders drank either drop.

tapply(data$drinkbin,data$cond, table)
## $Extinct
## 
##  0  1 
## 11 24 
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## 
## $Illusion
## 
##  0  1 
## 14 13 
## 
## $Reward
## 
##   0   1 
##   4 102
in total, we recorded answer for 35 extinct trial, 27 Illusion trials and 106 reward trials. Out of the 

total, they represent:

35/131
## [1] 0.2671756
27/133
## [1] 0.2030075
106/538
## [1] 0.197026
from this count we have already removed 3 trials from the extinct condition, since the spider drank 

both drops. We interpreted this case as a lack of choice, as much as drinking neither.

Preliminary analysis: difference between sides

At first, I want to see if there is a difference in the number of times spider drank the drops 

depending on their position in space (left, right, top, bottom). I will test it in interaction with the 

condition, as I expect the spiders to only drink the correct ones in rewarded trials, as the wrong ones 

are unpalatable.

ms<-glmer(drankit~cond*side+(1|subj),data=data, family= binomial,
          glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
simres<-simulateResiduals(ms) #standard seed for random values is 123
plot(simres)
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Anova(ms)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: drankit
##            Chisq Df Pr(>Chisq)  
## cond      5.1650  2    0.07559 .
## side      6.2788  3    0.09881 .
## cond:side 2.0193  6    0.91791  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e<-emmeans(ms, ~cond*side)
pairs(e, simple="side")
## cond = Extinct:
##  contrast      estimate    SE  df z.ratio p.value
##  down - left   1.70e-01 0.525 Inf  0.324  0.9883 
##  down - right  1.70e-01 0.525 Inf  0.324  0.9883 
##  down - top   -4.98e-01 0.503 Inf -0.991  0.7543 
##  left - right -3.40e-06 0.504 Inf  0.000  1.0000 
##  left - top   -6.68e-01 0.486 Inf -1.375  0.5148 
##  right - top  -6.68e-01 0.486 Inf -1.375  0.5148 
## 
## cond = Illusion:
##  contrast      estimate    SE  df z.ratio p.value
##  down - left  -1.76e-01 0.658 Inf -0.268  0.9933 
##  down - right -7.07e-01 0.600 Inf -1.179  0.6404 
##  down - top   -6.56e-01 0.585 Inf -1.122  0.6759 
##  left - right -5.31e-01 0.602 Inf -0.882  0.8141 
##  left - top   -4.80e-01 0.588 Inf -0.815  0.8474 
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##  right - top   5.12e-02 0.523 Inf  0.098  0.9997 
## 
## cond = Reward:
##  contrast      estimate    SE  df z.ratio p.value
##  down - left  -1.31e-01 0.315 Inf -0.414  0.9760 
##  down - right -4.29e-01 0.299 Inf -1.433  0.4784 
##  down - top   -4.71e-01 0.295 Inf -1.596  0.3807 
##  left - right -2.98e-01 0.292 Inf -1.021  0.7372 
##  left - top   -3.40e-01 0.289 Inf -1.180  0.6397 
##  right - top  -4.24e-02 0.271 Inf -0.157  0.9986 
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
There seems to not be any preference for any side.

Preliminary analysis: difference between shapes

At first, I want to see if there is a difference in the number of times spider drank the drops 

depending on their shape, independently from their value (correct or wrong). Also here I will 

include condition, both for the same reason as before and because in the “illusion” condition there is 

no shape

msh<-glmer(drankit~cond*shape+(1|subj),data=data, family= binomial,
          glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
simres<-simulateResiduals(msh) #standard seed for random values is 123
plot(simres)
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Anova(msh)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: drankit
##             Chisq Df Pr(>Chisq)  
## cond       5.0621  2    0.07958 .
## shape      0.1718  1    0.67854  
## cond:shape 2.0617  2    0.35671  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e<-emmeans(msh, ~cond*shape)
pairs(e, simple="shape")
## cond = Extinct:
##  contrast estimate    SE  df z.ratio p.value
##  O - X     -0.3775 0.356 Inf -1.061  0.2885 
## 
## cond = Illusion:
##  contrast estimate    SE  df z.ratio p.value
##  O - X      0.0833 0.406 Inf  0.205  0.8375 
## 
## cond = Reward:
##  contrast estimate    SE  df z.ratio p.value
##  O - X      0.2121 0.205 Inf  1.032  0.3021 
## 
## Results are given on the log odds ratio (not the response) scale.
There seems to not be any preference for any shape.

Preliminary analysis: time spent behind either screen

At this point, let’s see if the spiders spent more time behind the correct screen, and in turn in the 

proximity of the correct drop. this is a measure less precise than the binomial choice with drinking, 

since the spiders wander a lot, but it may still be of interest

mt<-lmer(behind~cond*value+(1|subj),data=data)
simres<-simulateResiduals(mt) #standard seed for random values is 123
## Model family was recognized or set as continuous, but duplicate values were 
detected in the response. Consider if you are fitting an appropriate model.
plot(simres)
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testUniformity(simres)

## 
##  One-sample Kolmogorov-Smirnov test
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## 
## data:  simulationOutput$scaledResiduals
## D = 0.35711, p-value < 2.2e-16
## alternative hypothesis: two-sided
mt<-glmmPQL(behind~cond*value, ~1|subj, data=data, family = gaussian)
## iteration 1
## iteration 2
Anova(mt)
## Analysis of Deviance Table (Type II tests)
## 
## Response: zz
##             Chisq Df Pr(>Chisq)   
## cond       0.3151  2   0.854252   
## value      7.8629  1   0.005046 **
## cond:value 8.2563  2   0.016113 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e<-emmeans(mt,~cond*value,type="response")
pairs(e, simple="value")
## cond = Extinct:
##  contrast        estimate   SE   df t.ratio p.value
##  correct - wrong     0.79 30.4 1581  0.026  0.9793 
## 
## cond = Illusion:
##  contrast        estimate   SE   df t.ratio p.value
##  correct - wrong   -29.32 30.2 1581 -0.972  0.3313 
## 
## cond = Reward:
##  contrast        estimate   SE   df t.ratio p.value
##  correct - wrong    58.31 15.0 1581  3.888  0.0001
I see a difference in the time spent behind the correct and the wrong screen only for the reward 

condition. This is probably directly related to the time spent drinking, as I expect them to almost not 

spend any time near the wrong drop

Main analysis: all trials

now to the main analysis. 

m0<-glmer(drinkbin~cond+(1|subj),data=data,family="binomial")
## boundary (singular) fit: see ?isSingular
simres<-simulateResiduals(m0) #standard seed for random values is 123
plot(simres)
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Anova(m0)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: drinkbin
##       Chisq Df Pr(>Chisq)    
## cond 27.427  2  1.107e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
there is a difference between the conditions. I will not test each one against chance level

e<-emmeans(m0,~cond,type="response")
toplot1<-as.data.frame(e)
test(e, adjust="bonferroni")
##  cond      prob     SE  df z.ratio p.value
##  Extinct  0.686 0.0785 Inf  2.143  0.0964 
##  Illusion 0.481 0.0962 Inf -0.192  1.0000 
##  Reward   0.962 0.0185 Inf  6.354  <.0001 
## 
## P value adjustment: bonferroni method for 3 tests 
## Tests are performed on the logit scale
As expected, the spider drink almost exclusively the correct drop in the “rewarded” condition. The 

only few contacts with the wrong one are probably accidental ones. In the extinct condition the 

probability of drinking the correct drop over the wrong one is of 0.686. even thought it does not 

reach significance, probably due to the low number of subjects
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Main analysis: only first trial

there is the chance that the insertion of extinction trials decreases the motivation of subject, that 

after having experienced for the first time the water drop may stop to perform as the same level. For 

this reason we test only the first trial in which each subject experienced for the first time the 

unrewarded trial with the training shapes (extinct) and the illusory ones (illusion). also the rewarded 

trials are added for completeness, However we do not expect them to be any different from the full 

experiment

rev<-subset(data, data$cond=="Reward")
rev<-subset(rev,rev$drinkbin>=0)
rev<-rev[match(unique(rev$subj),rev$subj),]

ext<-subset(data, data$cond=="Extinct")
ext<-subset(ext,ext$drinkbin>=0)
ext<-ext[match(unique(ext$subj),ext$subj),]

ill<-subset(data, data$cond=="Illusion")
ill<-subset(ill,ill$drinkbin>=0)
ill<-ill[match(unique(ill$subj),ill$subj),]

first<-rbind(rev,ext,ill)
m1<-glmer(drinkbin~cond+(1|subj),data=first,family="binomial")
## boundary (singular) fit: see ?isSingular
simres<-simulateResiduals(m1) #standard seed for random values is 123
plot(simres)
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Anova(m1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: drinkbin
##       Chisq Df Pr(>Chisq)   
## cond 10.681  2   0.004793 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
there is a difference between the conditions.

e<-emmeans(m1,~cond,type="response")
toplot2<-as.data.frame(e)

test(e, adjust="bonferroni")
##  cond      prob     SE  df z.ratio p.value
##  Extinct  0.750 0.1083 Inf  1.903  0.1712 
##  Illusion 0.308 0.1280 Inf -1.349  0.5316 
##  Reward   0.941 0.0571 Inf  2.690  0.0214 
## 
## P value adjustment: bonferroni method for 3 tests 
## Tests are performed on the logit scale
again, the extinct condition has a probability of 0.75 of choosing the correct drop. However the 

number of subjects and trial is so low that it does not raise above significance.

Plot the model

toplot1$model<-rep("all")
toplot2$model<-rep("first")

toplot<-rbind(toplot1,toplot2)

ggplot(toplot,aes(x=cond,y=prob))+
  scale_color_manual(values = c("blue","darkgoldenrod2"))+
  geom_point(aes(color=model), position=position_dodge(0.5),size=3)+
  geom_hline(aes(yintercept=0.5), linetype="dotted")+
  geom_errorbar(aes(ymin=prob-SE,ymax=prob+SE, 
color=model),position=position_dodge(0.5),size=1.3,width = 0.3)+
  xlab("Condition")+
  ylab("Probability of drinking the correct drop")+
  theme_light()+
  theme(axis.text.x = element_text(size=14,colour="black"),
        axis.text.y = element_text(size=14,colour="black"),
        axis.title.x = element_text(size=16),
        axis.title.y = element_text(size=16),
        plot.title = element_text(size=18),
        legend.position="right")+
  geom_signif(stat="identity",tip_length = 0.1,
              data=data.frame(x=c(2.85, 3.15),
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                              y=c(0.985, 1), annotation=c("0.0001", "0.0214")),
              aes(x=x,xend=x, y=y, yend=y, annotation=annotation))
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Appendix 6 – Data Analysis of the study: design of a low-cost, design 
and validation of an open source “Skinner-box” system for the study of 

land arthropods.
This appendix provides the entire R script and output of the statistical analysis we performed and 

figures produced, in their original form. It is presented in the spirit of open and transparent science, 

but has not been carefully curated.

Setup

Load packages

library(readODS)
library(knitr)
library(lme4)
library(car)
library(emmeans)
library(DHARMa)
library(pscl)
library(ggplot2)
library(ggsignif)

Data

This analysis starts from the already summarised data of the experiment. In the data table here 

loaded each trial has two rows, one for the correct sensor and one for the wrong sensor.

Analysis

Preliminary analysis: raw data vs merged data

While on top of a sensor, the spiders sometimes turned around, changing ever so slightly the portion 

of the photoresistor that they were covering with their body. Sometimes, when the spider covered 

the sensor just enough to surpass the activation treshold, the movements on top of the photoresistor 

caused a fast deactivation and reactivation of it, effectively registering two different presses instead 

of 1. We belive that it would be improper to consider these multiple actiations as separate, since the 

spider did not really left and returned to the sensor. To solve this problem, we decided to merge in 

the raw data every activations of the same sensor that were 0.4sec or below apart, resulting in just 

one, longer activation, as per the actual behaviour. for transparency, the provided data contains both 

the raw data and the data after the merging process.

first, let’s see the percentage of trials in which the system registered multiple activations for just one 

covering.
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data$havechanged<-data$rawvsclean
data$havechanged[data$havechanged>1]<-1 #0 if they are the same, 1 if they have 
changed
mean(data$havechanged)
## [1] 0.1632997
sum(data$havechanged)/2
## [1] 48.5
data have been modified in 48.5 trials, 16.33% of the total trials note that the number retrived is not 

an integer, since we have 2 rows for each trial and it was possible that the modification was done 

for only one of the two sensors.

now, let’s see the percentage divided per sensor (correct or wrong)

mp <- glmer(havechanged~sensor+(1|subj),data=data,family=binomial)
Anova(mp)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: havechanged
##         Chisq Df Pr(>Chisq)  
## sensor 4.0849  1    0.04327 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e<-emmeans(mp,~sensor,type="response")
e
##  sensor   prob     SE  df asymp.LCL asymp.UCL
##  correct 0.157 0.0319 Inf    0.1040     0.230
##  wrong   0.104 0.0241 Inf    0.0652     0.162
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale
pairs(e)
##  contrast        odds.ratio    SE  df z.ratio p.value
##  correct / wrong        1.6 0.375 Inf 2.021   0.0433 
## 
## Tests are performed on the log odds ratio scale
there is a higher percentage of multiple activation for the correct sensor. This maybe because 

spiders tend to spend more time on top of the correct sensor, as it should be preferred. Moreover the 

drop is dispensed when the spiders cover the correct sensor: this means that they will likely perceive 

the movement and turn to fixate on the newly dispensed reward, effectivly generating the multiple 

activation. On the other hand when the wrong sensor is covered nothing happens.

Anyway, since the error was more present for the correct sensor over the wrong one, our merging 

process will in the worst case scenario make us underestimate the effect, not overestimate. We are 

confident that our manipulation effectivly decreases the probability of a type 1 error

I will now test the times, in order to see if this is the case
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Preliminary analysis: time

mt<-lmer(time~sensor*blocktrial*block+(1|subj),data=data)
Anova(mt)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: time
##                           Chisq Df Pr(>Chisq)    
## sensor                  18.4995  1  1.699e-05 ***
## blocktrial               0.7935  1     0.3730    
## block                    0.2990  1     0.5845    
## sensor:blocktrial        0.7259  1     0.3942    
## sensor:block             0.5015  1     0.4788    
## blocktrial:block         0.3051  1     0.5807    
## sensor:blocktrial:block  0.4029  1     0.5256    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
There seems to be a difference in the time spent on each sensor, regardless of trial day or block.

e<-emmeans(mt,~sensor,type="response")
## NOTE: Results may be misleading due to involvement in interactions
e
##  sensor  emmean   SE   df lower.CL upper.CL
##  correct 120.73 20.5 83.8     80.1    161.4
##  wrong     6.52 20.5 83.8    -34.1     47.2
## 
## Results are averaged over the levels of: block 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(e)
##  contrast        estimate   SE  df t.ratio p.value
##  correct - wrong      114 26.5 557 4.309   <.0001 
## 
## Results are averaged over the levels of: block
As expected, the time spent on top of the correct sensor is multiple orders of magnitiude more than 

the one spent on the wrong sensor

Preliminary analysis: sex differences

before proceeding with the training outcome, we want to see if different sexes (or ages) show a 

different activity level.

msex<-glmer(cover~sex+(1|subj),data=data,family="poisson")
simres<-simulateResiduals(msex) #standard seed for random values is 123
plot(simres)
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testZeroInflation(simres)

## 
##  DHARMa zero-inflation test via comparison to expected zeros with
##  simulation under H0 = fitted model
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## 
## data:  simulationOutput
## ratioObsSim = 1.7658, p-value < 2.2e-16
## alternative hypothesis: two.sided
mzsex<-zeroinfl(cover ~ sex + 1|subj, data = data)
Anova(mzsex)
## Analysis of Deviance Table (Type II tests)
## 
## Response: cover
##     Df  Chisq Pr(>Chisq)    
## sex  2 14.161  0.0008415 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e<-emmeans(mzsex,~sex,type="response")
## NOTE: A nesting structure was detected in the fitted model:
##     subj %in% sex
pairs(e)
##  contrast          estimate    SE  df z.ratio p.value
##  Female - Juvenile  -1.1605 0.285 Inf -4.078  0.0001 
##  Female - Male      -1.1502 0.316 Inf -3.644  0.0008 
##  Juvenile - Male     0.0103 0.227 Inf  0.045  0.9989 
## 
## Results are averaged over the levels of: subj 
## P value adjustment: tukey method for comparing a family of 3 estimates
there is a clear difference between groups. Males and Juveniles are not different to each other, while 

females are less active than both males and juveniles. These data has to be taken with caution, since 

we had only 2 females and 8 males, with the remaining 20 being juveniles. nevetheless the data 

were worth being presented in the supplemental.

Preliminary analysis: correct side

as before, we want to see if there was any side preference regardless of training outcome.

mside<-glmer(cover~side+(1|subj),data=data,family="poisson")
simres<-simulateResiduals(mside) #standard seed for random values is 123
plot(simres)
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testZeroInflation(simres)

## 
##  DHARMa zero-inflation test via comparison to expected zeros with
##  simulation under H0 = fitted model
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## 
## data:  simulationOutput
## ratioObsSim = 1.7536, p-value < 2.2e-16
## alternative hypothesis: two.sided
mzside<-zeroinfl(cover ~ side + 1|subj, data = data)
Anova(mzside)
## Analysis of Deviance Table (Type II tests)
## 
## Response: cover
##      Df  Chisq Pr(>Chisq)  
## side  1 6.5877    0.01027 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e<-emmeans(mzside,~side,type="response")
e
##  side  emmean    SE  df asymp.LCL asymp.UCL
##  left    2.44 0.123 Inf      2.20      2.68
##  right   2.11 0.114 Inf      1.88      2.33
## 
## Results are averaged over the levels of: subj 
## Confidence level used: 0.95
pairs(e)
##  contrast     estimate    SE  df z.ratio p.value
##  left - right    0.329 0.128 Inf 2.569   0.0102 
## 
## Results are averaged over the levels of: subj
data  shows  that  left is  strongly  preferred  over right, independently of what sensor is. Is  that 

influenced by the sensor?

mzside2<-zeroinfl(cover ~ side*sensor + 1|subj, data = data)
Anova(mzside2)
## Analysis of Deviance Table (Type II tests)
## 
## Response: cover
##             Df   Chisq Pr(>Chisq)    
## side         1  7.5974   0.005845 ** 
## sensor       1 44.4151  2.656e-11 ***
## side:sensor  1  2.5102   0.113114    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
e<-emmeans(mzside,~side,type="response")
e
##  side  emmean    SE  df asymp.LCL asymp.UCL
##  left    2.44 0.123 Inf      2.20      2.68
##  right   2.11 0.114 Inf      1.88      2.33
## 
## Results are averaged over the levels of: subj 
## Confidence level used: 0.95
pairs(e)
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##  contrast     estimate    SE  df z.ratio p.value
##  left - right    0.329 0.128 Inf 2.569   0.0102 
## 
## Results are averaged over the levels of: subj
There is a difference between sensors, that we will observe in detail in the main analysis. There is 

however no interaction between sensor and side, so we can assume that the left bias is independent 

from the training procedure.

Main analysis

now to the main analysis. I want to see a difference between sensor, that increases with subsequent 

trials

m0<-glmer(cover~sensor*blocktrial*block+(1|subj),data=data,family="poisson",
          glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
simres<-simulateResiduals(m0) #standard seed for random values is 123
plot(simres)

testZeroInflation(simres)
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## 
##  DHARMa zero-inflation test via comparison to expected zeros with
##  simulation under H0 = fitted model
## 
## data:  simulationOutput
## ratioObsSim = 1.6832, p-value < 2.2e-16
## alternative hypothesis: two.sided
mz0<-zeroinfl(cover~sensor*blocktrial*block+ 1|subj ,data=data)
Anova(mz0)
## Analysis of Deviance Table (Type II tests)
## 
## Response: cover
##                         Df   Chisq Pr(>Chisq)    
## sensor                   1 45.2969  1.693e-11 ***
## blocktrial               1  2.4558  0.1170895    
## block                    1 12.6204  0.0003816 ***
## sensor:blocktrial        1  1.1841  0.2765197    
## sensor:block             1  0.4075  0.5232293    
## blocktrial:block         1  0.5963  0.4399892    
## sensor:blocktrial:block  1  0.8246  0.3638489    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
there is a difference between the sensors and between the blocks. Follow up with a post hoc

e<-emmeans(mz0,~sensor*block,type="response")
## NOTE: Results may be misleading due to involvement in interactions
e
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##  sensor  block emmean    SE  df asymp.LCL asymp.UCL
##  correct 1       2.39 0.149 Inf      2.09      2.68
##  wrong   1       1.65 0.131 Inf      1.40      1.91
##  correct 2       3.00 0.174 Inf      2.65      3.34
##  wrong   2       1.94 0.137 Inf      1.67      2.21
## 
## Results are averaged over the levels of: subj 
## Confidence level used: 0.95
contrast(e, adjust="bonferroni", list(C1vsW1=c(1,-1,0,0),
                                      C2vsW2=c(0,0,1,-1),
                                      C1vsC2=c(1,0,-1,0),
                                      W1vsW2=c(0,1,0,-1),
                                      CvsW=c(0.5,-0.5,0.5,-0.5),
                                      week1vsweek2=c(0.5,0.5,-0.5,-0.5)))
##  contrast     estimate    SE  df z.ratio p.value
##  C1vsW1          0.732 0.177 Inf  4.127  0.0002 
##  C2vsW2          1.053 0.189 Inf  5.560  <.0001 
##  C1vsC2         -0.610 0.189 Inf -3.233  0.0074 
##  W1vsW2         -0.288 0.173 Inf -1.669  0.5708 
##  CvsW            0.893 0.132 Inf  6.751  <.0001 
##  week1vsweek2   -0.449 0.128 Inf -3.494  0.0029 
## 
## Results are averaged over the levels of: subj 
## P value adjustment: bonferroni method for 6 tests
the correct sensor is preferred over the wrong sensor both in block 1 and block 2. the preference in 

block 1 may be due to the habituation phase (blue colour is already rewarded) or to a very fast 

learning: if the spiders learned already at trial 2 the whole block would result as different. We 

cannot exclude with our experiment a pre-existing preference for the colour blue over the colour 

yellow. However the focus of our experiment is not colour discrimination, but the efficacy of the 

learning paradigm. between block 1 and block 2 the amount of correct activation increases, while 

the amount of wrong activations remain the same. this is clear evidence of learning. the wrong 

sensor has no effect, so we expect it to be covered at random for the whole test length. Since the 

correct   sensor   instead   produce   a   desired   effect,   we   expected   an   increase   in   contacts.   Even 

postulating a pre-existing preference for the blue colour in block 1, the increased responses in block 

2 clearly show that the training procedure succeeded.

Plot the model

toplot<-as.data.frame(e)

ggplot(toplot,aes(x=block,y=emmean))+
  scale_color_manual(values = c("blue","darkgoldenrod2"))+
  geom_point(aes(color=sensor), position=position_dodge(0.5),size=3)+
  geom_errorbar(aes(ymin=emmean-SE,ymax=emmean+SE, 
color=sensor),position=position_dodge(0.5),size=1.3,width = 0.3)+
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  xlab("Test block")+
  ylab("Average number of activations")+
  theme_light()+
  theme(axis.text.x = element_text(size=14,colour="black"),
        axis.text.y = element_text(size=14,colour="black"),
        axis.title.x = element_text(size=16),
        axis.title.y = element_text(size=16),
        plot.title = element_text(size=18),
        legend.position="bottom")+
  geom_signif(stat="identity",tip_length = 0.1,
              data=data.frame(x=c(0.875, 1.875,0.875,1.125), xend=c(1.125, 
2.125,1.875,2.125),
                              y=c(2.6, 3.25,3.4,2.15), annotation=c("0.0002", 
"<0.0001","0.0074","0.5708")),
              aes(x=x,xend=xend, y=y, yend=y, 
annotation=annotation,fontface=c(2,2,2,1)))

Anecdotal data – trial by trial comparison

the model showed that there is no difference between trials in each single block. This is probably 

due to the high amount of zeros in the model, making impossible to produce reliable average 

number of activation in each single trial. However, just for completeness, I will plot the average 

number of activation per trial, without any statistical testing

data$dayn<-as.factor(data$dayn)
mz1<-zeroinfl(cover~sensor*dayn+ 1|subj ,data=data)

199



APPENDICES

e<-emmeans(mz1,~sensor*dayn,type="response")

Plot the model

toplot<-as.data.frame(e)

ggplot(toplot,aes(x=dayn,y=emmean))+
  scale_color_manual(values = c("blue","darkgoldenrod2"))+
  geom_point(aes(color=sensor), position=position_dodge(0.5),size=3)+
  geom_errorbar(aes(ymin=emmean-SE,ymax=emmean+SE, 
color=sensor),position=position_dodge(0.5),size=1.3,width = 0.3)+
  xlab("Test day")+
  ylab("Average number of activations")+
  theme_light()+
  theme(axis.text.x = element_text(size=14,colour="black"),
        axis.text.y = element_text(size=14,colour="black"),
        axis.title.x = element_text(size=16),
        axis.title.y = element_text(size=16),
        plot.title = element_text(size=18),
        legend.position="bottom")

note: day 6 and 7 are not shown in the graph, as they are the non-testing days between the two 

blocks

200


